首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular matrix (ECM) cues have been widely investigated for their impact on cellular behavior. Among mechanics, physics, chemistry, and topography, different ECM properties have been discovered as important parameters to modulate cell functions, activating mechanotransduction pathways that can influence gene expression, proliferation or even differentiation. Particularly, ECM topography has been gaining more and more interest based on the evidence that these physical cues can tailor cell behavior. Here, an overview of bottom‐up and top‐down approaches reported to produce materials capable of mimicking the ECM topography and being applied for biomedical purposes is provided. Moreover, the increasing motivation of using the layer‐by‐layer (LbL) technique to reproduce these topographical cues is highlighted. LbL assembly is a versatile methodology used to coat materials with a nanoscale fidelity to the geometry of the template or to produce multilayer thin films composed of polymers, proteins, colloids, or even cells. Different geometries, sizes, or shapes on surface topography can imply different behaviors: effects on the cell adhesion, proliferation, morphology, alignment, migration, gene expression, and even differentiation are considered. Finally, the importance of LbL assembly to produce defined topographical cues on materials is discussed, highlighting the potential of micro‐ and nanoengineered materials to modulate cell function and fate.  相似文献   

2.
Recent years have seen increasing interest in the construction of nanoscopically layered materials involving aqueous‐based sequential assembly of polymers on solid substrates. In the booming research area of layer‐by‐layer (LbL) assembly of oppositely charged polymers, self‐assembly driven by hydrogen bond formation emerges as a powerful technique. Hydrogen‐bonded (HB) LbL materials open new opportunities for LbL films, which are more difficult to produce than their electrostatically assembled counterparts. Specifically, the new properties associated with HB assembly include: 1) the ease of producing films responsive to environmental pH at mild pH values, 2) numerous possibilities for converting HB films into single‐ or two‐component ultrathin hydrogel materials, and 3) the inclusion of polymers with low glass transition temperatures (e.g., poly(ethylene oxide)) within ultrathin films. These properties can lead to new applications for HB LbL films, such as pH‐ and/or temperature‐responsive drug delivery systems, materials with tunable mechanical properties, release films dissolvable under physiological conditions, and proton‐exchange membranes for fuel cells. In this report, we discuss the recent developments in the synthesis of LbL materials based on HB assembly, the study of their structure–property relationships, and the prospective applications of HB LbL constructs in biotechnology and biomedicine.  相似文献   

3.
Surface modification of biomaterials is a well‐known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer‐by‐layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer‐based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell‐based biosensors, diagnostic systems, and basic cell biology.  相似文献   

4.
The Langmuir‐Blodgett (LB) technique is known as an elegant method for fabrication of well‐defined layered structures with molecular level precision. Since its discovery the LB method has made an indispensable contribution to surface science, physical chemistry, materials chemistry and nanotechnology. However, recent trends in research might suggest the decline of the LB method as alternate methods for film fabrication such as layer‐by‐layer (LbL) assembly have emerged. Is LB film technology obsolete? This review is presented in order to challenge this preposterous question. In this review, we summarize recent research on LB and related methods including (i) advanced design for LB films, (ii) LB film as a medium for supramolecular chemistry, (iii) LB technique for nanofabrication and (iv) LB involving advanced nanomaterials. Finally, a comparison between LB and LbL techniques is made. The latter reveals the crucial role played by LB techniques in basic surface science, current advanced material sciences and nanotechnologies.  相似文献   

5.
Polymeric materials formed via layer‐by‐layer (LbL) assembly have promise for use as drug delivery vehicles. These multilayered materials, both as capsules and thin films, can encapsulate a high payload of toxic or sensitive drugs, and can be readily engineered and functionalized with specific properties. This review highlights important and recent studies that advance the use of LbL‐assembled materials as therapeutic devices. It also seeks to identify areas that require additional investigation for future development of the field. A variety of drug‐loading methods and delivery routes are discussed. The biological barriers to successful delivery are identified, and possible solutions to these problems are discussed. Finally, state‐of‐the‐art degradation and cargo release mechanisms are also presented.  相似文献   

6.
Layer‐by‐layer (LbL) assembly is a powerful and versatile technique to deposit functional thin films, but often requires a large number of deposition steps to achieve a film thick enough to provide a desired property. By incorporating amine salts into the cationic polyelectrolyte and its associated rinse, LbL clay‐containing nanocomposite films can achieve much greater thickness (>1 μm) with relatively few deposition cycles (≤6 bilayers). Amine salts interact with nanoclays, causing nanoplatelets to deposit in stacks rather than as individual platelets. This technique appears to be universal, exhibiting thick growth with multiple types of nanoclay, including montmorillonite and vermiculite (VMT), and a variety of amine salts (e.g., hexylamine and diethanolamine). The characteristic order found in LbL‐assembled films is maintained despite the incredible thickness. Films assembled in this manner achieve oxygen transmission rates below 0.009 cc m−2 d−1 atm−1 with just 6 bilayers (BLs) of chitosan/VMT deposited. These thick clay‐based thin films also impart exceptional flame resistance. A 2‐BL film renders a 3.2 mm polystyrene plate self‐extinguishing, while an 8‐BL film (3.9 μm thick) prevents ignition entirely. This ability to generate much thicker clay‐based multilayers with amine salts opens up tremendous potential for these nanocoatings in real world applications.  相似文献   

7.
Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low‐cost, high‐performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy‐level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer‐by‐layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic‐energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis.  相似文献   

8.
Efficient and safe delivery systems for siRNA therapeutics remain a challenge. Elevated secreted protein, acidic, and rich in cysteine (SPARC) protein expression is associated with tissue scarring and fibrosis. Here we investigate the feasibility of encapsulating SPARC‐siRNA in the bilayers of layer‐by‐layer (LbL) nanoparticles (NPs) with poly(L‐arginine) (ARG) and dextran (DXS) as polyelectrolytes. Cellular binding and uptake of LbL NPs as well as siRNA delivery were studied in FibroGRO cells. siGLO‐siRNA and SPARC‐siRNA were efficiently coated onto hydroxyapatite nanoparticles. The multilayered NPs were characterized with regard to particle size, zeta potential and surface morphology using dynamic light scattering and transmission electron microscopy. The SPARC‐gene silencing and mRNA levels were analyzed using ChemiDOC western blot technique and RT‐PCR. The multilayer SPARC‐siRNA incorporated nanoparticles are about 200 nm in diameter and are efficiently internalized into FibroGRO cells. Their intracellular fate was also followed by tagging with suitable reporter siRNA as well as with lysotracker dye; confocal microscopy clearly indicates endosomal escape of the particles. Significant (60%) SPARC‐gene knock down was achieved by using 0.4 pmole siRNA/μg of LbL NPs in FibroGRO cells and the relative expression of SPARC mRNA reduced significantly (60%) against untreated cells. The cytotoxicity as evaluated by xCelligence real‐time cell proliferation and MTT cell assay, indicated that the SPARC‐siRNA‐loaded LbL NPs are non‐toxic. In conclusion, the LbL NP system described provides a promising, safe and efficient delivery platform as a non‐viral vector for siRNA delivery that uses biopolymers to enhance the gene knock down efficiency for the development of siRNA therapeutics.  相似文献   

9.
Freestanding flexible nanocomposite structures fabricated by layer‐by‐layer (LbL) assembly are promising candidates for many potential applications, such as in the fields of thermomechanical sensing, controlled release, optical detection, and drug delivery. In this article, we review recent advances in the fabrication and characterization of different types of freestanding LbL structures in air and at air/liquid and liquid/liquid interfaces, including micro‐ and nanocapsules, microcantilevers, freely suspended membranes, encapsulated nanoparticle arrays, and sealed‐cavity arrays. Several recently developed fabrication techniques, such as spin‐assisted coating, dipping, and micropatterning, make the assembly process more efficient and impart novel physical properties to the freestanding films.  相似文献   

10.
Fabrication of functional nanostructures is a prominent issue in nanotechnology, because they often exhibit unique properties that are different from the individual building blocks. Protein cage nanoparticles are attractive nanobuilding blocks for constructing nanostructures due to their well‐defined symmetric spherical structures, polyvalent nature, and functional plasticity. Here, a lumazine synthase protein cage nanoparticle is genetically modified to be used as a template to generate functional nanobuilding blocks and covalently display enzymes (β‐lactamase) and protein ligands (FKBP12/FRB) on its surface, making dual‐functional nanobuilding blocks. Nanoreaction clusters are subsequently created by ligand‐mediated alternate deposition of two complementary building blocks using layer‐by‐layer (LbL) assemblies. 3D nanoreaction clusters provide enhanced enzymatic activity compared with monolayered building block arrays. The approaches described here may provide new opportunities for fabricating functional nanostructures and nanoreaction clusters, leading to the development of new protein nanoparticle‐based nanostructured biosensor devices.  相似文献   

11.
Encapsulation systems are urgently needed both as micrometer and sub‐micrometer capsules for active chemicals' delivery, to encapsulate biological objects and capsules immobilized on surfaces for a wide variety of advanced applications. Methods for encapsulation, prolonged storage and controllable release are discussed in this review. Formation of stimuli responsive systems via layer‐by‐layer (LbL) assembly, as well as via mobile chemical bonding (hydrogen bonds, chemisorptions) and formation of special dynamic stoppers are presented. The most essential advances of the systems presented are multifunctionality and responsiveness to a multitude of stimuli – the possibility of formation of multi‐modal systems. Specific examples of advanced applications – drug delivery, diagnostics, tissue engineering, lab‐on‐chip and organ‐on‐chip, bio‐sensors, membranes, templates for synthesis, optical systems, and antifouling, self‐healing materials and coatings – are provided. Finally, we try to outline emerging developments.  相似文献   

12.
Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS‐scavenging, and osteoinductive porous Ti scaffold is prepared by the on‐surface in situ assembly of a polypyrrole‐polydopamine‐hydroxyapatite (PPy‐PDA‐HA) film through a layer‐by‐layer pulse electrodeposition (LBL‐PED) method. During LBL‐PED, the PPy‐PDA nanoparticles (NPs) and HA NPs are in situ synthesized and uniformly coated on a porous scaffold from inside to outside. PDA is entangled with and doped into PPy to enhance the ROS scavenging rate of the scaffold and realize repeatable, efficient ROS scavenging over a long period of time. HA and electrical stimulation synergistically promote osteogenic cell differentiation on PPy‐PDA‐HA films. Ultimately, the PPy‐PDA‐HA porous scaffold provides excellent bone regeneration through the synergistic effects of electroactivity, cell affinity, and antioxidative activity of the PPy‐PDA NPs and the osteoinductivity of HA NPs. This study provides a new strategy for functionalizing porous scaffolds that show great promise as implants for tissue regeneration.  相似文献   

13.
A macroscopic film (2.5 cm × 2.5 cm) made by layer‐by‐layer assembly of 100 single‐layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat‐treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near‐perfect in‐plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in‐plane thermal conductivity is exceptionally high, 2292 ± 159 W m?1 K?1 while in‐plane electrical conductivity is 2.2 × 105 S m?1. The high performance of these films is attributed to the combination of the high in‐plane crystalline order and unique stacking configuration through the thickness.  相似文献   

14.
Most electronics consist of functional thin films with tens of nanometer thicknesses. It is usually challenging to control the growth of these thin films using conventional solution-based approaches. Nanoadditive manufacturing, a method to deposit electronically desired molecules, polymers, or nanomaterials in a layer-by-layer (LbL) fashion, has emerged as a promising technique for the precise control of film growth and device fabrication. Here, basic principles of nanoadditive manufacturing approaches with self-limiting characteristics are summarized with a particular focus on Langmuir–Blodgett assembly and LbL assembly. Additively manufactured electronic thin films with properties of conductors, semiconductors, and dielectrics are reviewed, followed by a discussion of their application in various electronics, such as field-effect transistors, sensors, memory devices, photodetectors, light-emitting diodes, and electrochromic devices. Finally, challenges and future developments of these approaches are proposed. The resulting analysis reveals promising opportunities of nanoadditive manufacturing for the solution-based fabrication of electronic devices.  相似文献   

15.
An approach for manipulating single adherent cells is developed that is integrated with an enzymatic batch release. This strategy uses an array of releasable microfabricated mobile substrates, termed microplates, formed from a biocompatible polymer, parylene. A parylene microplate array of 10–70 μm in diameter can be formed on an alginate hydrogel sacrificial layer by using a standard photolithographic process. The parylene surfaces are modified with fibronectin to enhance cell attachment, growth, and stretching. To load single cells onto these microplates, cells are initially placed in suspension at an optimized seeding density and are allowed to settle, stretch, and grow on individual microplates. The sacrificial layer underneath the microplate array can be dissolved on a time‐scale of several seconds without cytotoxicity. This system allows the inspection of selected single adherent cells. The ability to assess single cells while maintaining their adhesive properties will broaden the examination of a variety of attributes, such as cell shape and cytoskeletal properties.  相似文献   

16.
The design of advanced, nanostructured materials at the molecular level is of tremendous interest for the scientific and engineering communities because of the broad application of these materials in the biomedical field. Among the available techniques, the layer‐by‐layer assembly method introduced by Decher and co‐workers in 1992 has attracted extensive attention because it possesses extraordinary advantages for biomedical applications: ease of preparation, versatility, capability of incorporating high loadings of different types of biomolecules in the films, fine control over the materials' structure, and robustness of the products under ambient and physiological conditions. In this context, a systematic review of current research on biomedical applications of layer‐by‐layer assembly is presented. The structure and bioactivity of biomolecules in thin films fabricated by layer‐by‐layer assembly are introduced. The applications of layer‐by‐layer assembly in biomimetics, biosensors, drug delivery, protein and cell adhesion, mediation of cellular functions, and implantable materials are addressed. Future developments in the field of biomedical applications of layer‐by‐layer assembly are also discussed.  相似文献   

17.
The surface design and control of substrates with nanometer- or micrometer-sized polymer films are of considerable interest for both fundamental and applied studies in the biomedical field because of the required surface properties. The layer-by-layer (LbL) technique was discovered in 1991 by Decher and co-workers for the fabrication of polymer multilayers constructed mainly through electrostatic interaction. The scope and applicability of this LbL assembly has been extended by introducing molecularly regular conformations of polymers or proteins by employing, for the first time, weak interactions such as van der Waals interactions and biological recognition. Since these weak interactions are the sum of the attractive or repulsive forces between parts of the same molecule, they allow macromolecules to be easily arranged into the most stable conformation in a LbL film. By applying this characteristic feature, the template polymerization of stereoregular polymers, stereoregular control of surface biological properties, drastic morphological control of biodegradable nano materials, and the development of three-dimensional cellular multilayers as a tissue model were successfully achieved. It is expected that LbL assembly using weak interactions will promote further interest into fundamental and applied studies on the design of surface chemistry in the biomedical field.  相似文献   

18.
The fabrication of thin organic films covalently grafted onto silicon substrates is of significant interest, as they are expected to give access to a broad range of new materials for integration into microelectronic applications. Covalent layer-by-layer (LbL) assembly offers a high degree of freedom when designing such thin films. In this work an approach for the preparation of covalent redox active molecular multilayers on silicon (100) surfaces is presented using a highly branched decaallylferrocene and thiol-ene click chemistry. The multilayers are analyzed by ellipsometry, X-ray photoelectron sprectroscopy, and cyclic voltammetry. The results indicate that the multilayer growth is linear for at least sixteen layers and the density of ferrocenes per layer is in the range of 6 × 10?11 mol cm?2. Moreover, this method for LbL assembly is extended to surfaces which have been locally passivated by microcontact printing. By atomic force microscopy measurements it is possible to show that the covalent LbL deposition proceeds exclusively in the nonpassivated areas.  相似文献   

19.
Two thin-film assembly methods are coupled to address proteins. Electrodeposition confers programmability and generates a template for layer-by-layer (LbL) assembly. LbL enables precise control of film thickness and the incorporation of labile biological components. The capabilities are demonstrated using glucose oxidase (GOx) based electrochemical biosensing within a microfabricated fluidic device.  相似文献   

20.
The design and assembly of DNA multilayer films with programmable degradation properties are reported. The nanostructured DNA films are assembled through the layer‐by‐layer (LbL) assembly technique and can be programmed to degrade by subsequently introducing DNA strands of specific sequences. The strands preferentially hybridize to the building blocks that stabilize the film structure, causing the film to rearrange and degrade. The rate of degradation is influenced by both the availability and accessibility of the complementary DNA binding sites within the film, as well as the degree of crosslinking within the film. Similar results are obtained for DNA multilayer films assembled on planar and particle supports. This approach offers an avenue to tailor degradability features into DNA‐based materials that may find application in the biosciences, in areas such as biosensing and drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号