首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nanomaterials advocated for biomedical applications must exhibit well‐controlled surface properties to achieve optimum performance in complex biological or physiological fluids. Dispersed materials with extremely high specific surface areas require as extensive characterization as their macroscale biomaterials analogues. However, current literature is replete with many examples of nanophase materials, most notably nanoparticles, with little emphasis placed on reporting rigorous surface analysis or characterization, or in formal implementation of surface property standards needed to validate structure‐property relationships for biomedical applications. Correlations of nanophase surface properties with their stability, toxicity and biodistributions are essential for in vivo applications. Surface contamination is likely, given their processing conditions and interfacial energies. Leaching adventitious adsorbates from high surface area nanomaterials is a possible toxicity mechanism. Polydimethylsiloxane (PDMS), long known as a ubiquitous contaminant in clean room conditions, chemical synthesis and microfabrication, remains a likely culprit in nanosystems fabrication, especially in synthesis, soft lithography and contact molding methods. New standards and expectations for analyzing the interfacial properties of nanoparticles and nano‐fabricated technologies are required. Surface science analytical rigor similar to that applied to biomedical devices, nanophases in microelectronics and heterogeneous catalysts should serve as a model for nanomaterials characterization in biomedical technologies.  相似文献   

2.
Cancer accounted for 13% of all deaths worldwide in 2005. Although early detection is critical for the successful treatment of many cancers, there are sensitivity limitations associated with current detection methodologies. Furthermore, many traditional anticancer drug treatments exhibit limited efficacy and cause high morbidity. The unique physical properties of nanoscale materials can be utilized to produce novel and effective sensors for cancer diagnosis, agents for tumor imaging, and therapeutics for cancer treatment. Functionalizing inorganic nanoparticles with biocompatible polymers and natural or rationally designed biomolecules offers a route towards engineering responsive and multifunctional composite systems. Although only a few such innovations have reached human clinical trial to date, nanocomposite materials based on functionalized metal and semiconductor nanoparticles promise to transform the way cancer is diagnosed and treated. This review summarizes the current state‐of‐the‐art in the development of inorganic nanocomposites for cancer‐related applications.  相似文献   

3.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   

4.
An effective and facile approach to prepare gold‐nanoparticle‐encapsulated alginic acid‐poly[2‐(diethylamino)ethyl methacrylate] monodisperse hybrid nanospheres (ALG–PDEA–Au) is developed by using monodisperse ALG–PDEA nanospheres as a precursor nanoparticulate reaction system. This approach utilizes particle‐interior chemistry, which avoids additional reductant or laborious separation process and, moreover, elegantly ensures that all the gold nanoparticles are located inside the hybrid nanospheres and every nanosphere is loaded with gold nanoparticles. These obtained ALG–PDEA–Au hybrid nanospheres have not only uniform size, similar surface properties, and good biocompatibility but also unique optical properties provided by the embedded gold nanoparticles. It is demonstrated that negatively charged ALG–PDEA–Au hybrid nanospheres can be internalized by human colorectal LoVo cancer cells and hence act as novel optical‐contrast reagents in tumor‐cell imaging by optical microscopy. Moreover, these hybrid nanospheres can also serve as biocompatible carriers for the loading and delivery of an anti‐cancer drug doxorubicin. In vitro cell viability tests reveal that drug‐loaded ALG–PDEA–Au hybrid nanospheres exhibit similar tumor cell inhibition to the free drug doxorubicin. Therefore, the obtained hybrid nanospheres successfully combine two functions, that is, cell imaging and drug delivery, into one single system, and may be of great application potential in other biomedical‐related areas.  相似文献   

5.
The use of traditional fluorophores for in vivo imaging applications is limited by poor quantum yield, poor tissue penetration of the excitation light, and excessive tissue autofluorescence, while the use of inorganic fluorescent particles that offer a high quantum yield is frequently limited due to particle toxicity. Rare‐earth‐doped nanoparticles that utilize near‐infrared upconversion overcome the optical limitations of traditional fluorophores, but are not typically suitable for biological application due to their insolubility in aqueous solution, lack of functional surface groups for conjugation of biomolecules, and potential cytotoxicity. A new approach to establish highly biocompatible and biologically targetable nanoshell complexes of luminescent rare‐earth‐doped NaYF4 nanoparticles (REs) excitable with 920–980 nm near‐infrared light for biomedical imaging applications is reported. The approach involves the encapsulation of NaYF4 nanoparticles doped with Yb and Er within human serum albumin nanoshells to create water‐dispersible, biologically functionalizable composite particles. These particles exhibit narrow size distributions around 200 nm and are stable in aqueous solution for over 4 weeks. The albumin shell confers cytoprotection and significantly enhances the biocompatibility of REs even at concentrations above 200 µg REs mL?1. Composite particles conjugated with cyclic arginine‐glycine‐aspartic acid (cRGD) specifically target both human glioblastoma cell lines and melanoma cells expressing αvβ3 integrin receptors. These findings highlight the promise of albumin‐encapsulated rare‐earth nanoparticles for imaging cancer cells in vitro and the potential for targeted imaging of disease sites in vivo.  相似文献   

6.
Multifunctional nanomaterials with efficient tumor‐targeting and high antitumor activity are highly anticipated in the field of cancer therapy. In this work, a synergetic tumor‐targeted, chemo‐photothermal combined therapeutic nanoplatform based on a dynamically PEGylated, borate‐coordination‐polymer‐coated polydopamine nanoparticle (PDA@CP‐PEG) is developed. PEGylation on the multifunctional nanoparticles is dynamically achieved via the reversible covalent interaction between the surface phenylboronic acid (PBA) group and a catechol‐containing poly(ethylene glycol) (PEG) molecule. Due to the acid‐labile PBA/catechol complex and the weak‐acid‐stable PBA/sialic acid (SA) complex, the nanoparticles can exhibit a synergetic targeting property for the SA‐overexpressed tumor cells, i.e., the PEG‐caused “passive targeting” and PBA‐triggered “active targeting” under the weakly acidic tumor microenvironment. In addition, the photothermal effect of the polydopamine core and the doxorubicin‐loading capacity of the porous coordination polymer layer endow the nanoparticles with the potential for chemo‐photothermal combination therapy. As expected, the in vitro and in vivo studies both verify that the multifunctional nanoparticles possess relatively lower systematic toxicity, efficient tumor targeting ability, and excellent chemo‐photothermal activity for tumor inhibition. It is believed that these multifunctional nanoparticles with synergetic tumor targeting property and combined therapeutic strategies would provide an insight into the design of a high‐efficiency antitumor nanoplatform for potential clinical applications.  相似文献   

7.
Upconversion nanoparticle (UCNP)‐mediated photodynamic therapy has shown great effectiveness in increasing the tissue‐penetration depth of light to combat deep‐seated tumors. However, the inevitable phototoxicity to normal tissues resulting from the lack of tumor selectivity remains as a major challenge. Here, the development of tumor‐pH‐sensitive photodynamic nanoagents (PPNs) comprised of self‐assembled photosensitizers grafted pH‐responsive polymeric ligands and UCNPs is reported. Under neutral pH conditions, photosensitizers aggregated in the PPNs are self‐quenched; however, upon entry into a tumor microenvironment with lower pH, the PPNs not only exhibit enhanced tumor‐cell internalization due to charge reversal but also are further disassembled into well‐dispersed nanoparticles in the endo/lysosomes of tumor cells, enabling the efficient activation of photosensitizers. The results demonstrate the attractive properties of both UCNP‐mediated deep‐tissue penetration of light and high therapeutic selectivity in vitro and in vivo.  相似文献   

8.
Hydrophobic ultrasmall nanoparticles synthesized in nonpolar solvents exhibit great potential in biomedical applications. However, a major challenge when applying these nanomaterials in biomedical research is the lack of a versatile strategy to render them water dispersible while preserving the hydrodynamic diameter (HD) to be less than 8 nm for efficient renal clearance. To address this problem, tryptone is employed as the novel ligand to fabricate a simple, versatile, and inexpensive strategy for transferring hydrophobic NaGdF4 nanodots (3 nm in diameter) from organic phase into aqueous phase without any complicated organic synthesis. The paramagnetic properties of NaGdF4 nanodots are well retained after the phase transfer process. In particular, the tryptone–NaGdF4 nanodots have ultrasmall HD (ca., 7.5 nm), which greatly improves their tumor accumulation and facilitates renal clearance within 24 h postinjection. The as‐prepared tryptone–NaGdF4 nanodots can also be further functionalized with other molecules for extensively biomedical and bioanalytical applications. Furthermore, the proposed strategy can easily be extended to transfer other types of inorganic nanoparticles from hydrophobic to hydrophilic for facilitating biomedical applications.  相似文献   

9.
Robust synthesis of large‐scale self‐assembled nanostructures with long‐range organization and a prominent response to external stimuli is critical to their application in functional plasmonics. Here, the first example of a material made of liquid crystalline nanoparticles which exhibits UV‐light responsive surface plasmon resonance in a condensed state is presented. To obtain the material, metal cores are grafted with two types of organic ligands. A promesogenic derivative softens the system and induces rich liquid crystal phase polymorphism. Second, an azobenzene derivative endows nanoparticles with photoresponsive properties. It is shown that nanoparticles covered with a mixture of these ligands assemble into long‐range ordered structures which exhibit a novel dual‐responsivity. The structure and plasmonic properties of the assemblies can be controlled by a change in temperature as well as by UV‐light irradiation. These results present an efficient way to obtain bulk quantities of self‐assembled nanostructured materials with stability that is unattainable by alternative methods such as matrix‐assisted or DNA‐mediated organization.  相似文献   

10.
A major obstacle in luminescence imaging is the limited penetration of visible light into tissues and interference associated with light scattering and autofluorescence. Near‐infrared (NIR) emitters that can also be excited with NIR radiation via two‐photon processes can mitigate these factors somewhat because they operate at wavelengths of 650–1000 nm where tissues are more transparent, light scattering is less efficient, and endogenous fluorophores are less likely to absorb. This study presents photolytically stable, NIR photoluminescent, porous silicon nanoparticles with a relatively high two‐photon‐absorption cross‐section and a large emission quantum yield. Their ability to be targeted to tumor tissues in vivo using the iRGD targeting peptide is demonstrated, and the distribution of the nanoparticles with high spatial resolution is visualized.  相似文献   

11.
Visible light is much more available and less harmful than ultraviolet light, but ultralong organic phosphorescence (UOP) with visible‐light excitation remains a formidable challenge. Here, a concise chemical approach is provided to obtain bright UOP by tuning the molecular packing in the solid state under irradiation of available visible light, e.g., a cell phone flashlight under ambient conditions (room temperature and in air). The excitation spectra exhibit an obvious redshift via the incorporation of halogen atoms to tune intermolecular interactions. UOP is achieved through H‐aggregation to stabilize the excited triplet state, with a high phosphorescence efficiency of 8.3% and a considerably long lifetime of 0.84 s. Within a brightness of 0.32 mcd m?2 that can be recognized by the naked eye, UOP can last for 104 s in total. Given these features, ultralong organic phosphorescent materials are used to successfully realize dual data encryption and decryption. Moreover, well‐dispersed UOP nanoparticles are prepared by polymer‐matrix encapsulation in an aqueous solution, and their applications in bioimaging are tentatively being studied. This result will pave the way toward expanding metal‐free organic phosphorescent materials and their applications.  相似文献   

12.
Supramolecular self‐assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self‐assembly and materials science. The dynamic and adaptive nature of self‐assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small‐organic‐molecule self‐assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure–property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up‐to‐date research developments in the field are provided and research challenges to be overcome in future studies are revealed.  相似文献   

13.
The photo‐induced reconfigurable assembly of nanostructures via the simultaneous noncovalent and covalent polymerization of a functional ferrocene‐tyrosine (Fc‐Y) molecule is reported. The Fc‐Y monomers can directly self‐assemble into nanospheres with a smooth surface driven by noncovalent interactions. By covalent photo‐crosslinking of the Fc‐Y monomers, the nanospheres transform spontaneously into hollow vesicles composed of hierarchically ordered lamellar structures. It is worth noting that the formed nanostructures exhibit both reducing property for in situ mineralization of gold nanoparticles with tunable biocatalytic behavior, and the redox activity for superior energy storage capacity. The measured energy storage capacity is 31 mAh g−1 for the nanospheres, which is the highest value reported so far for peptide assemblages as supercapacitor. The results offer insights into the dynamic self‐assembly of highly ordered multifunctional materials with promising applications in catalysis, sensing, energy and biomedical fields.  相似文献   

14.
Materials exhibiting persistent luminescence (PersL) have great prospect in optoelectronic and biomedical applications such as optical information storage, bio‐imaging, and so on. Unfortunately, PersL materials with multimode emission properties have been rarely reported, although they are expected to be very desirable in multilevel anti‐counterfeiting and encryption applications. Herein, Cr3+‐doped zinc aluminum germanium (ZAG:Cr) nanoparticles exhibiting triple‐mode emissions are designed and demonstrated. Upon exposure to steady 254 nm UV light, the ZAG:Cr nanoparticles yield steady bluish‐white emission. After turning off the UV light, the emission disappears quickly and the mode switches to transient near‐infrared (NIR) PersL emission at predominantly 690 nm. The transient NIR PersL emission which arises from Cr3+ is induced by non‐equivalent substitution of Ge4+. After persisting for 50 min, it can be retriggered by 980 nm photons due to the continuous trap depth distribution of ZAG:Cr between 0.65 and 1.07 eV. Inspired by the triple‐mode emissions from ZAG:Cr, multifunctional luminescent inks composed of ZAG:Cr nanoparticles are prepared, and high‐security labeling and encoding encryption properties are demonstrated. The results indicate that ZAG:Cr nanoparticles have great potential in anti‐counterfeiting and encryption applications, and the strategy and concept described here provide insights into the design of advanced anti‐counterfeiting materials.  相似文献   

15.
The capacity and conductivity deficiencies of TiO2(B) are addressed simultaneously through a smart morphological and compositional design. Elaborately designed hierarchical heterostructures are reported, consisting of carbon‐coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles, based on a facile self‐assembly strategy. The novel hierarchical heterostructures exhibit a remarkable synergy by bridging the intriguing functionalities of TiO2(B) nanosheets (high safety and durability), Fe3O4 nanoparticles (high theoretical capacity), and carbon coatings (high conductivity), which results in significantly improved cycle and rate performances. A startlingly high reversible capacity of 763 mA h g−1 is delivered at 500 mA g−1 after 200 charging−discharging cycles. Even when the current density is as high as 10 000 mA g−1, the reversible capacity is still up to 498 mA h g−1. This smart morphological and compositional design opens up new opportunities for developing novel, multifunctional hierarchical heterostructures as promising anode materials for next‐generation, high‐power lithium‐ion batteries.  相似文献   

16.
Two‐dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon‐based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface‐to‐volume ratios, and surface charge. Here, we focus on state‐of‐the‐art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials.  相似文献   

17.
Elemental tantalum is a well‐known biomedical metal in clinics due to its extremely high biocompatibility, which is superior to that of other biomedical metallic materials. Hence, it is of significance to expand the scope of biomedical applications of tantalum. Herein, it is reported that tantalum nanoparticles (Ta NPs), upon surface modification with polyethylene glycol (PEG) molecules via a silane‐coupling approach, are employed as a metallic photoacoustic (PA) contrast agent for multiwavelength imaging of tumors. By virtue of the broad optical absorbance from the visible to near‐infrared region and high photothermal conversion efficiency (27.9%), PEGylated Ta NPs depict high multiwavelength contrast capability for enhancing PA imaging to satisfy the various demands (penetration depth, background noise, etc.) of clinical diagnosis as needed. Particularly, the PA intensity of the tumor region postinjection is greatly increased by 4.87, 7.47, and 6.87‐fold than that of preinjection under 680, 808, and 970 nm laser irradiation, respectively. In addition, Ta NPs with negligible cytotoxicity are capable of eliminating undesirable reactive oxygen species, ensuring the safety for biomedical applications. This work introduces a silane‐coupling strategy for the surface engineering of Ta NPs, and highlights the potential of Ta NPs as a biocompatible metallic contrast agent for multiwavelength photoacoustic image.  相似文献   

18.
The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.  相似文献   

19.
Photoacoustic (PA) imaging in the second near‐infrared (NIR‐II) window (1000–1700 nm) holds great promise for deep‐tissue diagnosis due to the reduced light scattering and minimized tissue absorption; however, exploration of such a noninvasive imaging technique is greatly constrained by the lack of biodegradable NIR‐II absorbing agents. Herein, the first series of metabolizable NIR‐II PA agents are reported based on semiconducting polymer nanoparticles (SPNs). Such completely organic nanoagents consist of π‐conjugated yet oxidizable optical polymer as PA generator and hydrolyzable amphiphilic polymer as particle matrix to provide water solubility. The obtained SPNs are readily degraded by myeloperoxidase and lipase abundant in phagocytes, transforming from nonfluorescent nanoparticles (30 nm) into NIR fluorescent ultrasmall metabolites (≈1 nm). As such, these nanoagents can be effectively cleared out via both hepatobiliary and renal excretions after systematic administration, leaving no toxicity to living mice. Particularly these nanoagents possess high photothermal conversion efficiencies and emit bright PA signals at 1064 nm, enabling sensitive NIR‐II PA imaging of both subcutaneous tumor and deep brain vasculature through intact skull in living animals at a low systematic dosage. This study thus provides a generalized molecular design toward organic metabolizable semiconducting materials for biophotonic applications in NIR‐II window.  相似文献   

20.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号