首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water‐splitting electrolyzers that can convert electricity into storable hydrogen are a fascinating and scalable energy conversion technology for the utilization of renewable energies. To speed up the sluggish hydrogen and oxygen evolution reactions (HER and OER), electrocatalysts are essential for reducing their kinetic energy barriers and eventually improving the energy conversion efficiency. As efficient strategies for modulating the binding ability of water‐splitting intermediates on electrocatalyst surface, the support effect and interface effect are drawing growing attention. Herein, some of the recent research progress on the support and interface effects in HER, OER, and overall water‐splitting electrocatalysts is highlighted. Specifically, the correlation between the electronic interaction of the constituent components and the electrocatalytic water‐splitting performance of electrocatalysts is profoundly discussed, with the aim of advancing the development of highly efficient water‐splitting electrocatalysts, which may eventually replace the noble‐metal‐based electrocatalysts and bring the practically widespread utilization of water‐splitting electrolyzers into a reality.  相似文献   

2.
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.  相似文献   

3.
4.
In the near future, sustainable energy conversion and storage will largely depend on the electrochemical splitting of water into hydrogen and oxygen. Perceiving this, countless research works focussing on the fundamentals of electrocatalysis of water splitting and on performance improvements are being reported everyday around the globe. Electrocatalysts of high activity, selectivity, and stability are anticipated as they directly determine energy‐ and cost efficiency of water electrolyzers. Amorphous electrocatalysts with several advantages over crystalline counterparts are found to perform better in electrocatalytic water splitting. There are plenty of studies witnessing performance enhancements in electrocatalysis of water splitting while employing amorphous materials as catalysts. The harmony between the flexibility of amorphous electrocatalysts and electrocatalysis of water splitting (both the oxygen evolution reaction [OER] and the hydrogen evolution reaction [HER]) is one of the untold and unsummarized stories in the field of electrocatalytic water splitting. This Review is devoted to comprehensively discussing the upsurge of amorphous electrocatalysts in electrochemical water splitting. In addition to that, the basics of electrocatalysis of water splitting are also elaborately introduced and the characteristics of a good electrocatalyst for OER and HER are discussed.  相似文献   

5.
Metal–organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self‐sacrificial templates to achieve function‐oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal‐free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost‐efficient strategy to synthesize Co9S8 nanoparticles‐embedded N/S‐codoped carbon nanofibers (Co9S8/NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core–shell ZIF‐wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co9S8/N, S‐codoped carbon nanocomposites through a one‐step calcination reaction. The optimal Co9S8/NSCNFs‐850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm?2, a small Tafel slope of 54 mV dec?1, and superior long‐term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF‐based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non‐noble‐metal electrocatalysts for sustainable energy conversion.  相似文献   

6.
Electrochemical water splitting driven by sustainable energy such as solar, wind, and tide is attracting ever‐increasing attention for sustainable production of clean hydrogen fuel from water. Leveraging these advances requires efficient and earth‐abundant electrocatalysts to accelerate the kinetically sluggish hydrogen and oxygen evolution reactions (HER and OER). A large number of advanced water‐splitting electrocatalysts have been developed through recent understanding of the electrochemical nature and engineering approaches. Specifically, strain engineering offers a novel route to promote the electrocatalytic HER/OER performances for efficient water splitting. Herein, the recent theoretical and experimental progress on applying strain to enhance heterogeneous electrocatalysts for both HER and OER are reviewed and future opportunities are discussed. A brief introduction of the fundamentals of water‐splitting reactions, and the rationalization for utilizing mechanical strain to tune an electrocatalyst is given, followed by a discussion of the recent advances on strain‐promoted HER and OER, with special emphasis given to combined theoretical and experimental approaches for determining the optimal straining effect for water electrolysis, along with experimental approaches for creating and characterizing strain in nanocatalysts, particularly emerging 2D nanomaterials. Finally, a vision for a future sustainable hydrogen fuel community based on strain‐promoted water electrolysis is proposed.  相似文献   

7.
Electrocatalysis is at the center of many sustainable energy conversion technologies that are being developed to reduce the dependence on fossil fuels. The past decade has witnessed significant progresses in the exploitation of advanced electrocatalysts for diverse electrochemical reactions involved in electrolyzers and fuel cells, such as the hydrogen evolution reaction (HER), the oxygen reduction reaction (ORR), the CO2 reduction reaction (CO2RR), the nitrogen reduction reaction (NRR), and the oxygen evolution reaction (OER). Herein, the recent research advances made in porous electrocatalysts for these five important reactions are reviewed. In the discussions, an attempt is made to highlight the advantages of porous electrocatalysts in multiobjective optimization of surface active sites including not only their density and accessibility but also their intrinsic activity. First, the current knowledge about electrocatalytic active sites is briefly summarized. Then, the electrocatalytic mechanisms of the five above-mentioned reactions (HER, ORR, CO2RR, NRR, and OER), the current challenges faced by these reactions, and the recent efforts to meet these challenges using porous electrocatalysts are examined. Finally, the future research directions on porous electrocatalysts including synthetic strategies leading to these materials, insights into their active sites, and the standardized tests and the performance requirements involved are discussed.  相似文献   

8.
As a consequence of the depletion of fossil fuels and an increasing population, the global energy crisis has driven researchers to explore innovative energy storage and conversion (ESC) devices, such as fuel cells, electrolyzers and chemical looping systems. In order to enhance the energy conversion efficiency of these electrochemical devices, high performance and stable electrocatalysts are essential to accelerate the sluggish electrochemical kinetics, e.g. oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and redox reaction. In recent years, as cost-effective and high-efficient catalysts, perovskite oxides have attracted much attention. In addition, the potential of perovskite electrocatalysts may be further boosted due to their flexible composition and tunable electronic structures. This review provides the readers with a comprehensive understanding and updated information of improvements towards the electrocatalytic performances of perovskite oxides. It will focus on research papers regarding low to intermediate temperature electrochemical devices, e.g., water splitting, fuel cells, chemical looping technology and three-way catalysis (TWC) published over the last five years. Various design strategies for optimizing the conductivity and catalytic activity of perovskite are discussed in detail. In the end, this review discusses challenges for the future researches in regard to perovskite based electrocatalysts.  相似文献   

9.
Electrochemical energy conversion and storage devices such as fuel cells and metal–air batteries have been extensively studied in recent decades for their excellent conversion efficiency, high energy capacity, and low environmental impact. However, sluggish kinetics of the oxygen‐related reactions at air cathodes, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are still worth improving. Noble metals such as platinum (Pt), iridium (Ir), ruthenium (Ru) and their oxides are considered as the benchmark ORR and OER electrocatalysts, but they are expensive and prone to be poisoned due to the fuel crossover effect, and may suffer from agglomeration and leaching after long‐term usage. To mitigate these limits, it is highly desirable to design alternative ORR/OER electrocatalysts with prominent performance. Metal–organic frameworks (MOFs) are a class of porous crystalline materials consisting metal ions/clusters coordinated by organic ligands. Their crystalline structure, tunable pore size and high surface area afford them wide opportunities as catalytic materials. This Review covers MOF‐derived ORR/OER catalysts in electrochemical energy conversion, with a focus on the different strategies of material design and preparation, such as composition control and nanostructure fabrication, to improve the activity and durability of MOF‐derived electrocatalysts.  相似文献   

10.
Herein, a unique approach to dispose of human hair by pyrolizing it in a regulated environment is presented, yielding highly porous, conductive hair carbons with heteroatoms and high surface area. α‐keratin in the protein network of hair serves as a precursor for the heteroatoms and carbon. The carbon framework is ingrained with heteroatoms such as nitrogen and sulfur, which otherwise are incorporated externally through energy‐intensive, hazardous, chemical reactions using proper organic precursors. This judicious transformation of organic‐rich waste not only addresses the disposal issue, but also generates valuable functional carbon materials from the discard. This unique synthesis strategy involving moderate activation and further graphitization enhances the electrical conductivity, while still maintaining the precious heteroatoms. The effect of temperature on the structural and functional properties is studied, and all the as‐obtained carbons are applied as metal‐free catalysts for the oxygen reduction reaction (ORR). Carbon graphitized at 900 °C emerges as a superior ORR electrocatalyst with excellent electrocatalytic performance, high selectivity, and long durability, demonstrating that hair carbon can be a promising alternative for costly Pt‐based electrocatalysts in fuel cells. The ORR performance can be discussed in terms of heteroatom doping, surface properties, and electrical conductivity of the resulting porous hair carbon materials.  相似文献   

11.
With increasing human population, sustainable energy production has become one of the most persistent and significant problems of the current century. Hydrogen is considered to be the best clean fuel for future energy requirements. As a substitute of fossil fuels, hydrogen is readily provided by an electrocatalytic hydrogen evolution reaction that splits water molecules. Conventional electrocatalysts based on noble metals are scarce and considerably expensive for large-scale hydrogen production, necessitating the search for low-cost earth abundant alternatives. In this context, transition metal nitrides have gained considerable attention as competent electrocatalytic materials for water splitting. This review presents recent advancements and progress on transition metal nitrides as efficient and cost-effective electrocatalysts for hydrogen production. After overviewing the fundamental aspects of the hydrogen evolution reaction (HER), the review discusses various synthetic strategies for developing transition metal nitrides. Discussed herein are titanium nitrides, vanadium nitrides, iron nitrides, nickel nitrides, molybdenum nitrides, tungsten nitrides, and their composite electrocatalysts employed in HER applications. Some design viewpoints for improving the electrocatalytic activity are systematically proposed. Finally, the review discusses challenges and future perspectives for the advancement of non-noble metal-based electrocatalysts.  相似文献   

12.
Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting.  相似文献   

13.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.  相似文献   

14.
The ever-increasing global environmental and energy crisis issues necessitate technological innovation, especially in the development of renewable energy-related devices, such as electrochemical energy conversion and storage technologies, including fuel cells, water electrolyzers, and CO2 electrolyzers. Reliable and sustainable energy conversion devices are highly dependent on engineering of electrocatalysts. State-of-the-art electrocatalysts for these electrochemical conversion systems are usually platinum group metal (PGM)-based nanoparticles with high cost, which has sparked intensive research on atomically dispersed single metal site electrocatalysts for decreasing metal loadings and boosting catalytic efficiencies by taking advantage of their inherent electronic effects, quantum size effects, and metal-support interactions. In this review, we first introduce the concept of atomically dispersed single metal site electrocatalysts, including highlighting their key properties and synthesis strategies, followed by a discussion of the mutual metal-support interactions, and most importantly, how these factors correlate with catalytic properties. Next, the advances in synthetic strategies and characterization techniques for single metal site electrocatalysts are highlighted. Recent advances in single metal site electrocatalysts designs for applications in electrochemical conversion reactions are also presented. Finally, remaining challenges and a forward-looking perspective on this field of research are provided.  相似文献   

15.
In the face of the global energy challenge and progressing global climate change, renewable energy systems and components, such as fuel cells and electrolyzers, which close the energetic oxygen and carbon cycles, have become a technology development priority. The electrochemical oxygen reduction reaction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR) are important electrocatalytic processes that proceed at gas diffusion electrodes of hydrogen fuel cells and CO2 electrolyzers, respectively. However, their low catalytic activity (voltage efficiency), limited long‐term stability, and moderate product selectivity (related to their Faradaic efficiency) have remained challenges. To address these, suitable catalysts are required. This review addresses the current state of research on Pt‐based and Cu‐based nanoalloy electrocatalysts for ORR and CO2RR, respectively, and critically compares and contrasts key performance parameters such as activity, selectivity, and durability. In particular, Pt nanoparticles alloyed with transition metals, post‐transition metals and lanthanides, are discussed, as well as the material characterization and their performance for the ORR. Then, bimetallic Cu nanoalloy catalysts are reviewed and organized according to their main reaction product generated by the second metal. This review concludes with a perspective on nanoalloy catalysts for the ORR and the CO2RR, and proposes future research directions.  相似文献   

16.
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal–organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.  相似文献   

17.
The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir‐based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir‐based multimetallic PHNCs show transition‐metal‐dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First‐principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much‐enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall‐water‐splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm?2, and only 8 mV of polarization‐curve shift after a 1000‐cycle durability test in 0.5 m H2SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high‐performance electrochemical overall‐water‐splitting devices.  相似文献   

18.
19.
Heterogenous electrocatalysts based on transition metal sulfides (TMS) are being actively explored in renewable energy research because nanostructured forms support high intrinsic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, it is described how researchers are working to improve the performance of TMS‐based materials by manipulating their internal and external nanoarchitectures. A general introduction to the water‐splitting reaction is initially provided to explain the most important parameters in accessing the catalytic performance of nanomaterials catalysts. Later, the general synthetic methods used to prepare TMS‐based materials are explained in order to delve into the various strategies being used to achieve higher electrocatalytic performance in the HER. Complementary strategies can be used to increase the OER performance of TMS, resulting in bifunctional water‐splitting electrocatalysts for both the HER and the OER. Finally, the current challenges and future opportunities of TMS materials in the context of water splitting are summarized. The aim herein is to provide insights gathered in the process of studying TMS, and describe valuable guidelines for engineering other kinds of nanomaterial catalysts for energy conversion and storage technologies.  相似文献   

20.
Replacement of precious metal electrocatalysts with highly active and cost efficient alternatives for complete water splitting at low voltage has attracted a growing attention in recent years. Here, this study reports a carbon‐based composite co‐doped with nitrogen and trace amount of metallic cobalt (1 at%) as a bifunctional electrocatalyst for water splitting at low overpotential and high current density. An excellent electrochemical activity of the newly developed electrocatalyst originates from its graphitic nanostructure and highly active Co‐Nx sites. In the case of carefully optimized sample of this electrocatalyst, 10 mA cm?2 current density can be achieved for two half reactions in alkaline solutions—hydrogen evolution reaction and oxygen evolution reaction—at low overpotentials of 220 and 350 mV, respectively, which are smaller than those previously reported for nonprecious metal and metal‐free counterparts. Based on the spectroscopic and electrochemical investigations, the newly identified Co‐Nx sites in the carbon framework are responsible for high electrocatalytic activity of the Co,N‐doped carbon. This study indicates that a trace level of the introduced Co into N‐doped carbon can significantly enhance its electrocatalytic activity toward water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号