首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
3.
ZnO is a potential candidate for photodetection utilizing the pyroelectric effect. Here, a self‐biased and translucent photodetector with the configuration of Cu4O3/ZnO/FTO/Glass is designed and fabricated. In addition, the pyroelectric effect is effectively harvested using indium tin oxide (ITO), silver nanowires (AgNWs), and a blend of AgNWs‐coated ITO as the transparent selective contact electrode. The improved rise times are observed from 1400 µs (bare condition; without the selective electrode) to 69, 60, 7 µs, and fall times from 720 µs (bare condition) to 80, 70, 10 µs for corresponding ITO, AgNWs, and AgNWs‐coated ITO contact electrodes, respectively. Similarly, the responsivity and detectivity are enhanced by about 4.39 × 107 and 5.27 × 105%, respectively. An energy band diagram is proposed to explain the underlying working mechanism based on the workfunction of the ITO (4.7 eV) and AgNWs (4.57 eV) as measured by Kelvin probe force microscopy, which confirms the formation of type‐II band alignment resulting in the efficient transport of photogenerated charge carriers. The functional use of the transparent selective contact electrode can effectively harness the pyro‐phototronic effect for next‐generation transparent and flexible optoelectronic applications.  相似文献   

4.
A cellulose paper is used impregnated with light‐emitting CdTe nanocrystals and carbon dots, and filled with a polyurethane to fabricate uniform transparent composite films with bright photoluminescence of red (R), green (G), and blue (B) (RGB) colors. A building brick‐like assembly method is introduced to realize RGB multicolor emission patterns from this composite material. By sectioning out individual pixels from monochrome‐emissive composite sheets, the advantage of the self‐healing properties of polyurethane is taken to arrange and weld them into a RGB patterned fabric by brief exposure to ethanol. This provides an approach to form single layer RGB light‐emitting pixels, such as potentially required in the display applications, without the use of any lithographic or etching processing. The method can utilize a wide range of different solution‐based kinds of light‐emitting materials.  相似文献   

5.
A printing‐based lithographic technique for the patterning of V2O5 nanowire channels with unidirectional orientation and controlled length is introduced. The simple, directional blowing of a patterned polymer stamp with N2 gas, inked with randomly distributed V2O5 nanowires, induces alignment of the nanowires perpendicular to the long axis of the line patterns. Subsequent stamping on the amine‐terminated surface results in the selective transfer of the aligned nanowires with a controlled length corresponding to the width of the relief region of the polymer stamp. By employing such a gas‐blowing‐assisted, selective‐transfer‐printing technique, two kinds of device structures consisting of nanowire channels and two metal electrodes with top contact, whereby the nanowires were aligned either parallel (parallel device) or perpendicular (serial device) to the current flow in the conduction channel, are fabricated. The electrical properties demonstrate a noticeable difference between the two devices, with a large hysteresis in the parallel device but none in the serial device. Systematic analysis of the hysteresis and the electrical stability account for the observed hysteresis in terms of the proton diffusion in the water layer of the V2O5 nanowires, induced by the application of an external bias voltage higher than a certain threshold voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号