首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 769 毫秒
1.
Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large‐area (≈0.2 cm2) single‐crystalline graphene membranes. A novel, polymer‐free picture frame assisted technique, coupled with a stress‐inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well‐defined cylindrical ≈200 nm pores. Diffusion‐driven flow shows selective transport of ≈0.66 nm hydrated K+ and Cl? ions over ≈1 nm sized small molecules, indicating the presence of selective sub‐nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub‐nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting.  相似文献   

2.
Epitaxial graphene grown on single crystal Cu(111) foils by chemical vapor deposition is found to be free of wrinkles and under biaxial compressive strain. The compressive strain in the epitaxial regions (0.25–0.40%) is higher than regions where the graphene is not epitaxial with the underlying surface (0.20–0.25%). This orientation‐dependent strain relaxation is through the loss of local adhesion and the generation of graphene wrinkles. Density functional theory calculations suggest a large frictional force between the epitaxial graphene and the Cu(111) substrate, and this is therefore an energy barrier to the formation of wrinkles in the graphene. Enhanced chemical reactivity is found in epitaxial graphene on Cu(111) foils as compared to graphene on polycrystalline Cu foils for certain chemical reactions. A higher compressive strain possibly favors lowering the formation energy and/or the energy gap between the initial and transition states, either of which can lead to an increase in chemical reactivity.  相似文献   

3.
Nacre‐like graphene films are prepared by evaporation‐induced assembly of graphene oxide dispersions containing small amounts of cellulose nanocrystal (CNC), followed by chemical reduction with hydroiodic acid. CNC induces the formation of wrinkles on graphene sheets, greatly enhancing the mechanical properties of the resultant graphene films. The graphene films deliver an ultrahigh tensile strength of 765 ± 43 MPa (up to 800 MPa in some cases), a large failure strain of 6.22 ± 0.19%, and a superior toughness of 15.64 ± 2.20 MJ m?3, as well as a high electrical conductivity of 1105 ± 17 S cm?1. They have a great potential for applications in flexible electronics because of their combined excellent mechanical and electrical properties.  相似文献   

4.
Metal corrosion is a long‐lasting problem in history and ultrahigh anticorrosion is one ultimate pursuit in the metal‐related industry. Graphene, in principle, can be a revolutionary material for anticorrosion due to its excellent impermeability to any molecule or ion (except for protons). However, in real applications, it is found that the metallic graphene forms an electrochemical circuit with the protected metals to accelerate the corrosion once the corrosive fluids leaks into the interface. Therefore, whether graphene can be used as an excellent anticorrosion material is under intense debate now. Here, graphene‐coated Cu is employed to investigate the facet‐dependent anticorrosion of metals. It is demonstrated that as‐grown graphene can protect Cu(111) surface from oxidation in humid air lasting for more than 2.5 years, in sharp contrast with the accelerated oxidation of graphene‐coated Cu(100) surface. Further atomic‐scale characterization and ab initio calculations reveal that the strong interfacial coupling of the commensurate graphene/Cu(111) prevents H2O diffusion into the graphene/Cu(111) interface, but the one‐dimensional wrinkles formed in the incommensurate graphene on Cu(100) can facilitate the H2O diffusion at the interface. This study resolves the contradiction on the anticorrosion capacity of graphene and opens a new opportunity for ultrahigh metal anticorrosion through commensurate graphene coating.  相似文献   

5.
To date, thousands of publications have reported chemical vapor deposition growth of “single layer” graphene, but none of them has described truly single layer graphene over large area because a fraction of the area has adlayers. It is found that the amount of subsurface carbon (leading to additional nuclei) in Cu foils directly correlates with the extent of adlayer growth. Annealing in hydrogen gas atmosphere depletes the subsurface carbon in the Cu foil. Adlayer‐free single crystal and polycrystalline single layer graphene films are grown on Cu(111) and polycrystalline Cu foils containing no subsurface carbon, respectively. This single crystal graphene contains parallel, centimeter‐long ≈100 nm wide “folds,” separated by 20 to 50 µm, while folds (and wrinkles) are distributed quasi‐randomly in the polycrystalline graphene film. High‐performance field‐effect transistors are readily fabricated in the large regions between adjacent parallel folds in the adlayer‐free single crystal graphene film.  相似文献   

6.
Owing to inherent 2D structure, marvelous mechanical, electrical, and thermal properties, graphene has great potential as a macroscopic thin film for surface coating, composite, flexible electrode, and sensor. Nevertheless, the production of large‐area graphene‐based thin film from pristine graphene dispersion is severely impeded by its poor solution processability. In this study, a robust wetting‐induced climbing strategy is reported for transferring the interfacially assembled large‐area ultrathin pristine graphene film. This strategy can quickly convert solvent‐exfoliated pristine graphene dispersion into ultrathin graphene film on various substrates with different materials (glass, metal, plastics, and cloth), shapes (film, fiber, and bulk), and hydrophobic/hydrophilic patterns. It is also applicable to nanoparticles, nanofibers, and other exfoliated 2D nanomaterials for fabricating large‐area ultrathin films. Alternate climbing of different ultrathin nanomaterial films allows a layer‐by‐layer transfer, forming a well‐ordered layered composite film with the integration of multiple pristine nanomaterials at nanometer scale. This powerful strategy would greatly promote the development of solvent‐exfoliated pristine nanomaterials from dispersions to macroscopic thin film materials.  相似文献   

7.
An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano‐ and micrometer‐sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer‐sized Cu, release more copper in serum‐containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate‐buffered saline. Sonication of particles for dispersion prior to exposure has a large effect on the initial copper release from Cu nanoparticles. A clear size‐dependent effect is observed from both a copper release and a toxicity perspective. In agreement with greater released amounts of copper per quantity of particles from the nanometer‐sized particles compared to the micrometer‐sized particles, the nanometer particles cause a higher degree of DNA damage (single‐strand breaks) and cause a significantly higher percentage of cell death compared to cytotoxicity induced by micrometer‐sized particles. Cytotoxic effects related to the released copper fraction are found to be significantly lower than the effects related to particles. No DNA damage is induced by the released copper fraction.  相似文献   

8.
As a new member of the MXene group, 2D Mo2C has attracted considerable interest due to its potential application as electrodes for energy storage and catalysis. The large‐area synthesis of Mo2C film is needed for such applications. Here, the one‐step direct synthesis of 2D Mo2C‐on‐graphene film by molten copper‐catalyzed chemical vapor deposition (CVD) is reported. High‐quality and uniform Mo2C film in the centimeter range can be grown on graphene using a Mo–Cu alloy catalyst. Within the vertical heterostructure, graphene acts as a diffusion barrier to the phase‐segregated Mo and allows nanometer‐thin Mo2C to be grown. Graphene‐templated growth of Mo2C produces well‐faceted, large‐sized single crystals with low defect density, as confirmed by scanning transmission electron microscopy (STEM) measurements. Due to its more efficient graphene‐mediated charge‐transfer kinetics, the as‐grown Mo2C‐on‐graphene heterostructure shows a much lower onset voltage for hydrogen evolution reactions as compared to Mo2C‐only electrodes.  相似文献   

9.
Wearable technologies are driving current research efforts to self‐powered electronics, for which novel high‐performance materials such as graphene and low‐cost fabrication processes are highly sought.The integration of high‐quality graphene films obtained from scalable water processing approaches in emerging applications for flexible and wearable electronics is demonstrated. A novel method for the assembly of shear exfoliated graphene in water, comprising a direct transfer process assisted by evaporation of isopropyl alcohol is developed. It is shown that graphene films can be easily transferred to any target substrate such as paper, flexible polymeric sheets and fibers, glass, and Si substrates. By combining graphene as the electrode and poly(dimethylsiloxane) as the active layer, a flexible and semi‐transparent triboelectric nanogenerator (TENG) is demonstrated for harvesting energy. The results constitute a new step toward the realization of energy harvesting devices that could be integrated with a wide range of wearable and flexible technologies, and opens new possibilities for the use of TENGs in many applications such as electronic skin and wearable electronics.  相似文献   

10.
Hierarchically structured metal oxides have two or more levels of structure. Their nanometer‐sized building blocks provide a high surface area, a high surface‐to‐bulk ratio, and surface functional groups that can interact with, e.g., heavy metal ions. Their overall micrometer‐sized structure provides desirable mechanical properties, such as robustness, facile species transportation, easy recovery, and regeneration. In combination these features are suitable for the removal of heavy metal ions from water. Several general synthesis routes for the fabrication of metal oxides with various morphologies and hierarchical structures are discussed including soft and hard template‐assisted routes. These routes are general, reliable, and environmentally friendly methods to prepare transition and rare earth metal oxides, including cobalt oxide, iron oxide, and ceria. As‐prepared hierarchically structured metal oxides show excellent adsorption capacities for AsV and CrVI ions in water.  相似文献   

11.
On account of unique characteristics, the integration of metal–organic frameworks as active materials in electronic devices attracts more and more attention. The film thickness, uniformity, area, and roughness are all fatal factors limiting the development of electrical and optoelectronic applications. However, research focused on ultrathin free‐standing films is in its infancy. Herein, a new method, vapor‐induced method, is designed to construct centimeter‐sized Ni3(HITP)2 films with well‐controlled thickness (7, 40, and 92 nm) and conductivity (0.85, 2.23, and 22.83 S m?1). Further, traditional transfer methods are tactfully applied to metal–organic graphene analogue (MOGA) films. In order to maintain the integrity of films, substrates are raised up from bottom of water to hold up films. The stripping method greatly improves the surface roughness Rq (root mean square roughness) without loss of conductivity and endows the film with excellent elasticity and flexibility. After 1000 buckling cycles, the conductance shows no obvious decrease. Therefore, the work may open up a new avenue for flexible electronic and magnetic devices based on MOGA.  相似文献   

12.
Graphene has been long thought of as a perfect barrier material due to its impermeability to all gases as well as mechanical and chemical durability. Moreover, graphene layers are transparent and conductive, significantly widening the field of potential applications beyond simple barrier coatings. However, it is very challenging to realize such barriers on a macro­scopic scale as immaculate large area films are not available. In this work, a highly effective oxygen gas barrier made from multiple layers of chemical vapor deposited graphene is presented. The individual graphene layers are stacked using a modified polymer‐assisted transfer method, avoiding polymer residue yielding an oxygen‐tight arrangement. A stack of three layers of graphene transmitted 6.9 cm3 m−2 d−1 of O2 which corresponds to 1.10 × 10−17 cm3 cm/cm2 s (cm Hg) when normalized to thickness and pressure. This is several orders of magnitude better than any macroscale graphene coating reported to date and performs on a level that can compete with most modern coatings while being much thinner and conductive.  相似文献   

13.
Heterostructures based on graphene and other 2D atomic crystals exhibit fascinating properties and intriguing potential in flexible optoelectronics, where graphene films function as transparent electrodes and other building blocks are used as photoactive materials. However, large‐scale production of such heterostructures with superior performance is still in early stages. Herein, for the first time, the preparation of a submeter‐sized, vertically stacked heterojunction of lead iodide (PbI2)/graphene on a flexible polyethylene terephthalate (PET) film by vapor deposition of PbI2 on graphene/PET substrate at a temperature lower than 200 °C is demonstrated. This film is subsequently used to fabricate bendable graphene/PbI2/graphene sandwiched photodetectors, which exhibit high responsivity (45 A W?1 cm?2), fast response (35 µs rise, 20 µs decay), and high‐resolution imaging capability (1 µm). This study may pave a facile pathway for scalable production of high‐performance flexible devices.  相似文献   

14.
A facile one-step co-reduction and low-temperature solution process was developed to prepare Cu–graphene (Cu–G), Ag–graphene (Ag–G), and Cu–Ag–graphene (Cu–Ag–G) composite films on glass substrates. Scanning electron microscope and transmission electron microscope images show that Cu/Ag nanoparticles are either distributed on the surface of graphene nanosheets or covered by graphene. The conductivity and transparency of these films were studied, and the results show that incorporation of Cu and Ag nanoparticles into graphene films can improve film conductivity. Ag nanoparticles are more effective in improving film conductivity. The conductivity and transparency of the composite films can be balanced by introducing the optimum amount of Cu or Ag nanoparticles. The conductivity and transparency of Cu–Ag–G films with optimum metal nanoparticle concentration are as good as those of Ag–G composite films. The Cu–Ag–G films meet the requirements of low-cost, high-conductivity, and transparent films that can be used as electrode materials. Thus, the proposed low-temperature solution process is a new route to preparing low-cost transparent and conductive electrodes on various substrates, including glass and flexible polymer substrates.  相似文献   

15.
Transparent permeation barrier layers on flexible polymer substrates This paper reviews different vacuum based technologies for manufacturing transparent permeation barrier layers and layer stacks on flexible polymer substrates. With plasma assisted reactive evaporation, a cost‐efficient, highly productive process for food packaging applications is presented. Reactive dual magnetron sputtering is a technology for the deposition of oxide layers with a very low water vapor and oxygen transmission rate at a reasonable deposition rate. Many groups suggest multilayer stacks for the encapsulation of flexible electronic devices. In this paper, an all‐in‐vacuum inline concept for manufacturing such multilayers is presented. It is based on the combination of reactively sputtered barrier layers with interlayers grown by using a magnetron based PECVD process (Magnetron‐PECVD). Both, process parameters, such as deposition rate and process pressure, and important layer properties, such as morphology and the water vapor and oxygen transmission rate are compared for the different single and multi layer technologies.  相似文献   

16.
The idea flat surface, superb thermal conductivity and excellent optical transmittance of single‐layer graphene promise tremendous potential for graphene as a material for transparent defoggers. However, the resistance of defoggers made from conventional transferred graphene increases sharply once both sides of the film are covered by water molecules which, in turn, leads to a temperature drop that is inefficient for fog removal. Here, the direct growth of large‐area and continuous graphene films on quartz is reported, and the first practical single‐layer graphene defogger is fabricated. The advantages of this single‐layer graphene defogger lie in its ultrafast defogging time for relatively low input voltages and excellent defogging robustness. It can completely remove fog within 6 s when supplied a safe voltage of 32 V. No visible changes in the full defogging time after 50 defogging cycles are observed. This outstanding performance is attributed to the strong interaction forces between the graphene films and the substrates, which prevents the permeation of water molecules. These directly grown transparent graphene defoggers are expected to have excellent prospects in various applications such as anti‐fog glasses, auto window and mirror defogging.  相似文献   

17.
Graphene has served widely as a support material for noble metal nanoparticle electrocatalysts in fuel cells. During the synthesis of electrocatalysts, however, the intense stacking and folding of graphene nanosheets decreases the utilization and activity of electrocatalysts, owing to the following aspects: i) the noble metal wrapped by the winding graphene cannot be fully utilized; ii) the structural destruction of graphene decreases the specific surface area and increases electrical resistance; and iii) the hydrophobicity and wrinkles of graphene greatly increase the mass transfer resistance of fuel molecules and electrolytes. In this work, 3D graphene oxide hollow nanospheres are designed to minimize wrinkles, maximize specific surface area, and realize the regular clipping of 2D graphene oxide. The 3D‐reduced graphene oxide hollow nanosphere supported Pd‐network nanohybrids (3D‐RGO/Pd‐NWs) are then obtained using 3D graphene oxide hollow nanospheres as a reaction precursor. The skeleton of 3D‐RGO not only acts as an exclusive inner conducting shell to promote electron and ion kinetics but is also crucial for enhancing the permeation of fuel molecules and electrolytes. Therefore, 3D‐RGO/Pd‐NWs exhibit enhanced electrocatalytic activity and durability for the formic oxidation reaction in an acidic medium compared to 2D graphene supported Pd nanoparticles and commercial Pd/C electrocatalysts.  相似文献   

18.
Corrugation is a ubiquitous phenomenon for graphene grown on metal substrates by chemical vapor deposition, which greatly affects the electrical, mechanical, and chemical properties. Recent years have witnessed great progress in controlled growth of large graphene single crystals; however, the issue of surface roughness is far from being addressed. Here, the corrugation at the interface of copper (Cu) and graphene, including Cu step bunches (CuSB) and graphene wrinkles, are investigated and ascribed to the anisotropic strain relaxation. It is found that the corrugation is strongly dependent on Cu crystallographic orientations, specifically, the packed density and anisotropic atomic configuration. Dense Cu step bunches are prone to form on loose packed faces due to the instability of surface dynamics. On an anisotropic Cu crystal surface, Cu step bunches and graphene wrinkles are formed in two perpendicular directions to release the anisotropic interfacial stress, as revealed by morphology imaging and vibrational analysis. Cu(111) is a suitable crystal face for growth of ultraflat graphene with roughness as low as 0.20 nm. It is believed the findings will contribute to clarifying the interplay between graphene and Cu crystal faces, and reducing surface roughness of graphene by engineering the crystallographic orientation of Cu substrates.  相似文献   

19.
The material usage in the packaging market of Germany has decreased over the last few years. This trend results from the substitution of heavy packages with light‐weight, flexible materials. In this context, aluminium foil‐based multilayer films have been partly replaced by metallized laminates in food packaging technology. Other coating materials, such as Al2O3 or SiOx, are used where transparent films are desired. The disadvantage of these vacuum‐coated layers is the existence of pinholes which allow diffusion processes, in contrast to aluminium foil‐based multilayer films. In this study the barrier behaviour of vacuum coated laminate films was predicted by numerical simulation. The results are presented in terms of dimensionless parameters so that they may be transferred to analogous problems. This model provides a method to calculate the oxygen permeation through coated laminates. However, it is invalid for condensable gases such as water vapour. The simulation is suited for characterizing the influence of the compound structure on the barrier properties of vacuum coated laminate films. The results are verified by comparing the calculated with measured values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
We report an alternative synthesis process, cold-wall thermal chemical vapor deposition (CVD), is replied to directly deposit single-layer and few-layer graphene films on Ar plasma treated Ni and Cu foils using CH4 as carbon source. Through optimizing the process parameters, large scale single-layer graphene grown on Ni foil is comparable to that grown on Cu foil. The graphene films were able to be transferred to other substrates such as SiO2/Si, flexible transparent PET and verified by optical microscopy, Raman microscopy and scanning electron microscopy. The sheet resistance and transmission of the transferred graphene films on PET substrate were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号