首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.  相似文献   

2.
Relative to electron donors for bulk heterojunction organic solar cells (OSCs), electron acceptors that absorb strongly in the visible and even near‐infrared region are less well developed, which hinders the further development of OSCs. Fullerenes as traditional electron acceptors have relatively weak visible absorption and limited electronic tunability, which constrains the optical and electronic properties required of the donor. Here, high‐performance fullerene‐free OSCs based on a combination of a medium‐bandgap polymer donor (FTAZ) and a narrow‐bandgap nonfullerene acceptor (IDIC), which exhibit complementary absorption, matched energy levels, and blend with pure phases on the exciton diffusion length scale, are reported. The single‐junction OSCs based on the FTAZ:IDIC blend exhibit power conversion efficiencies up to 12.5% with a certified value of 12.14%. Transient absorption spectroscopy reveals that exciting either the donor or the acceptor component efficiently generates mobile charges, which do not suffer from recombination to triplet states. Balancing photocurrent generation between the donor and nonfullerene acceptor removes undesirable constraints on the donor imposed by fullerene derivatives, opening a new avenue toward even higher efficiency for OSCs.  相似文献   

3.
Contribution of exciton generation in acceptor material to the photovoltaic performance of three bulk-heterojunction organic solar cells (BHJ OSCs), PTB7:PC71BM, P3HT:ICBA and P3HT:PC61BM are studied. Singlet and triplet rates of absorption and dissociation and diffusion lengths are calculated and compared with those when excitons are generated in the donor of these BHJ OSCs. It is found that the rates of absorption and dissociation and diffusion lengths are comparable whether excitons are generated in donor or acceptor of these BHJ OSCs. Therefore, it is proposed that the contribution of exciton generation in acceptor may not be negligible.  相似文献   

4.

To study the influence of thermal annealing on the charge generation and transport in PM6-based non-fullerene solar cells. Morphology, optical and electrochemical properties of active layers as well as electrical properties of polymer solar cells were studied. Furthermore, the photoelectric conversion processes of annealed and unannealed devices were also examined by means of time resolved spectroscopy. The results showed that thermal annealing had a weak influence on the dynamics of exciton states. Besides, annealed device is found to suppress bimolecular recombination owing to its higher charge carrier mobility in ordered donor and acceptor aggregation phases, which led to higher photocurrent and power conversion efficiency than unannealed photovoltaic device.

  相似文献   

5.
This review article provides an overview of recent advances in the study and understanding of dynamics of excitons in semiconductor nanocrystals (NCs) or quantum dots (QDs). Emphasis is placed on the relationship between exciton dynamics and optical properties, both linear and nonlinear. We also focus on the unique aspects of exciton dynamics in semiconductor NCs as compared to those in bulk crystals. Various experimental techniques for probing exciton dynamics, particularly time‐resolved laser methods, are reviewed. Relevant models and computational studies are also briefly presented. By comparing different materials systems, a unifying picture is proposed to account for the major dynamic features of excitons in semiconductor QDs. While the specific dynamic processes involved are material‐dependent, key processes can be identified for all the materials that include electronic dephasing, intraband relaxation, trapping, and interband recombination of free and trapped charge carriers (electron and hole). Exciton dynamics play a critical role in the fundamental properties and functionalities of nanomaterials of interest for a variety of applications including optical detectors, solar energy conversion, lasers, and sensors. A better understanding of exciton dynamics in nanomaterials is thus important both fundamentally and technologically.  相似文献   

6.
Purely organic electroluminescent materials, such as thermally activated delayed fluorescent (TADF) and triplet–triplet annihilation (TTA) materials, basically harness triplet excitons from the lowest triplet excited state (T1) to realize high efficiency. Here, a fluorescent material that can convert triplet excitons into singlet excitons from the high‐lying excited state (T2), referred to here as a “hot exciton” path, is reported. The energy levels of this compound are determined from the sensitization and nanosecond transient absorption spectroscopy measurements, i.e., small splitting energy between S1 and T2 and rather large T2–T1 energy gap, which are expected to impede the internal conversion (IC) from T2 to T1 and facilitate the reverse intersystem crossing from the high‐lying triplet state (hRISC). Through sensitizing the T2 state with ketones, the existence of the hRISC process with an ns‐scale delayed lifetime is confirmed. Benefiting from this fast triplet–singlet conversion, the nondoped device based on this “hot exciton” material reaches a maximum external quantum efficiency exceeding 10%, with a small efficiency roll‐off and CIE coordinates of (0.15, 0.13). These results reveal that the “hot exciton” path is a promising way to exploit high efficient, stable fluorescent emitters, especially for the pure‐blue and deep‐blue fluorescent organic light‐emitting devices.  相似文献   

7.
Plastic solar cells bear the potential for large‐scale power generation based on materials that provide the possibility of flexible, lightweight, inexpensive, efficient solar cells. Since the discovery of the photoinduced electron transfer from a conjugated polymer to fullerene molecules, followed by the introduction of the bulk heterojunction (BHJ) concept, this material combination has been extensively studied in organic solar cells, leading to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. This article reviews the processes and limitations that govern device operation of polymer:fullerene BHJ solar cells, with respect to the charge‐carrier transport and photogeneration mechanism. The transport of electrons/holes in the blend is a crucial parameter and must be controlled (e.g., by controlling the nanoscale morphology) and enhanced in order to allow fabrication of thicker films to maximize the absorption, without significant recombination losses. Concomitantly, a balanced transport of electrons and holes in the blend is needed to suppress the build‐up of the space–charge that will significantly reduce the power conversion efficiency. Dissociation of electron–hole pairs at the donor/acceptor interface is an important process that limits the charge generation efficiency under normal operation condition. Based on these findings, there is a compromise between charge generation (light absorption) and open‐circuit voltage (VOC) when attempting to reduce the bandgap of the polymer (or fullerene). Therefore, an increase in VOC of polymer:fullerene cells, for example by raising the lowest unoccupied molecular orbital level of the fullerene, will benefit cell performance as both fill factor and short‐circuit current increase simultaneously.  相似文献   

8.
Ternary organic solar cells are promising alternatives to the binary counterpart due to their potential in achieving high performance. Although a growing number of ternary organic solar cells are recently reported, less effort is devoted to morphology control. Here, ternary organic solar cells are fabricated using a wide‐bandgap polymer PBT1‐C as the donor, a crystalline fused‐ring electron acceptor ITIC‐2Cl, and an amorphous fullerene derivative indene‐C60 bisadduct (ICBA) as the acceptor. It is found that ICBA can disturb π–π interactions of the crystalline ITIC‐2Cl molecules in ternary blends and then help to form more uniform morphology. As a result, incorporation of 20% ICBA in the PBT1‐C:ITIC‐2Cl blend enables efficient charge dissociation, negligible bimolecular recombination, and balanced charge carrier mobilities. An impressive power conversion efficiency (PCE) of 13.4%, with a high fill factor (FF) of 76.8%, is eventually achieved, which represents one of the highest PCEs reported so far for organic solar cells. The results manifest that the adoption of amorphous fullerene acceptor is an effective approach to optimizing the ternary blend morphology and thereby increases the solar cell performance.  相似文献   

9.
Understanding and controlling nanoscale morphology is crucial to the performance of polymer bulk heterojunction solar cells, as well as other optoelectronic devices such as polymer light-emitting diodes, field-effect transistors, and sensors. In photovoltaic devices, optimum blend morphologies must be commensurate with the nanometer length scales of exciton diffusion and charge separation. We report on a generally applicable method of optimizing the phase segregation in polymer-polymer bulk heterojunctions based on tuning mixtures of low and high boiling point solvents. We have characterized the resulting blend morphologies with nanometer resolution using a transient absorption technique that probes the distribution of paths traveled by the excitons themselves prior to generating charges at an interface. Photovoltaic efficiencies are accounted for in terms of exciton diffusion, geminate pair separation, and polymer ordering, all of which are sensitive to the nanoscale morphology determined by the composition of the solvent mixture.  相似文献   

10.
Controlled growth of a molecular bulk heterojunction photovoltaic cell.   总被引:1,自引:0,他引:1  
The power conversion efficiency of organic photovoltaic cells has increased with the introduction of the donor-acceptor heterojunction that serves to dissociate strongly bound photogenerated excitons. Further efficiency increases have been achieved in both polymer and small-molecular-mass organic photovoltaic cells through the use of the bulk heterojunction (BHJ), where the distance an exciton must diffuse from its generation to its dissociation site is reduced in an interpenetrating network of the donor and acceptor materials. However, the random distribution of donor and acceptor materials in such structures can lead to charge trapping at bottlenecks and cul-de-sacs in the conducting pathways to the electrodes. Here, we present a method for growing crystalline organic films into a controlled bulk heterojunction; that is, the positions and orientations of donor and acceptor materials are determined during growth by organic vapour-phase deposition (OVPD), eliminating contorted and resistive conducting pathways while maximizing the interface area. This results in a substantial increase in power conversion efficiency compared with the best values obtained by 'random' small-molecular-weight BHJ solar cells formed by high-temperature annealing, or planar double heterojunction photovoltaic cells using the same archetypal materials systems.  相似文献   

11.
The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange interaction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.  相似文献   

12.
The scarcity of narrow bandgap donor polymers matched with perylene diimides (PDI)-based nonfullerene acceptors (NFAs) hinders improvement of the power conversion efficiency (PCE) value of organic solar cells (OSCs). Here, it is reported that a narrow bandgap donor polymer PDX, the chlorinated derivative of the famous polymer donor PTB7-Th, blended with PDI-based NFA boosts the PCE value exceeding 10%. The electroluminescent quantum efficiency of PDX-based OSCs is two orders of magnitude higher than that of PTB7-Th-based OSCs;therefore, the nonradiative energy loss is 0.103 eV lower. This is the highest PCE value for OSCs with the lowest energy loss using the blend of PTB7-Th derivatives and PDI-based NFAs as the active layer. Besides, PDX-based devices showed larger phase separation, faster charge mobilities, higher exciton dissociation probability, suppressed charge recombination, elevated charge transfer state, and decreased energetic disorder compared with the PTB7-Th-based OSCs. All these factors contribute to the simultaneously improved short circuit current density, open circuit voltage, and fill factor, thus significantly improving PCE. These results prove that chlorinated conjugated side thienyl groups can efficiently suppress the non-radiative energy loss and highlight the importance of fine-modifying or developing novel narrow bandgap polymers to further elevate the PCE value of PDI-based OSCs.  相似文献   

13.
Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.  相似文献   

14.
Ternary heterojunction strategies appear to be an efficient approach to improve the efficiency of organic solar cells (OSCs) through harvesting more sunlight. Ternary OSCs are fabricated by employing wide bandgap polymer donor (PM6), narrow bandgap nonfullerene acceptor (Y6), and PC71BM as the third component to tune the light absorption and morphologies of the blend films. A record power conversion efficiency (PCE) of 16.67% (certified as 16.0%) on rigid substrate is achieved in an optimized PM6:Y6:PC71BM blend ratio of 1:1:0.2. The introduction of PC71BM endows the blend with enhanced absorption in the range of 300–500 nm and optimises interpenetrating morphologies to promote photogenerated charge dissociation and extraction. More importantly, a PCE of 14.06% for flexible ITO‐free ternary OSCs is obtained based on this ternary heterojunction system, which is the highest PCE reported for flexible state‐of‐the‐art OSCs. A very promising ternary heterojunction strategy to develop highly efficient rigid and flexible OSCs is presented.  相似文献   

15.
Metal halide perovskites (MHPs) have recently attracted great attention from the scientific community due to their excellent photovoltaic performance as well as their tremendous potential for other optoelectronic applications such as light‐emitting diodes, lasers, and photodetectors. Despite the rapid progress in device applications, a solid understanding of the photophysical properties behind the device performance is highly desirable for MHPs. Here, the properties of excitons and photogenerated charge carriers in MHPs are explored. The unique dielectric constant properties, crystal–liquid duality, and fundamental optical processes of MHPs are first discussed. The properties of excitons and related phenomena in MHPs are then detailed, including the exciton binding energy determined by various methods and their influence factors, exciton dynamics, exciton–photon coupling and related applications, and exciton–phonon coupling in MHPs. The properties of photogenerated free charge carriers in MHPs such as the carrier diffusion length, mobility, and recombination are described. Recent progress in various applications is also demonstrated. Finally, a conclusion and perspectives of future studies for MHPs are presented.  相似文献   

16.
Nanoscale systems are forecast to be a means of integrating desirable attributes of molecular and bulk regimes into easily processed materials. Notable examples include plastic light-emitting devices and organic solar cells, the operation of which hinge on the formation of electronic excited states, excitons, in complex nanostructured materials. The spectroscopy of nanoscale materials reveals details of their collective excited states, characterized by atoms or molecules working together to capture and redistribute excitation. What is special about excitons in nanometre-sized materials? Here we present a cross-disciplinary review of the essential characteristics of excitons in nanoscience. Topics covered include confinement effects, localization versus delocalization, exciton binding energy, exchange interactions and exciton fine structure, exciton-vibration coupling and dynamics of excitons. Important examples are presented in a commentary that overviews the present understanding of excitons in quantum dots, conjugated polymers, carbon nanotubes and photosynthetic light-harvesting antenna complexes.  相似文献   

17.
Charge transfer in transition‐metal‐dichalcogenides (TMDs) heterostructures is a prerequisite for the formation of interlayer excitons, which hold great promise for optoelectronics and valleytronics. Charge accumulation accompanied by a charge‐transfer process can introduce considerable effect on interlayer exciton‐based applications; nevertheless, this aspect has been rarely studied up to date. This work demonstrates how the charge accumulation affects the light emission of interlayer excitons in van der Waals heterobilayers (HBs) consisting of monolayer WSe2 and WS2. As excitation power increases, the photoluminescence intensity of interlayer excitons increases more rapidly than that of intralayer excitons. The phenomenon can be explained by charge‐accumulation effect, which not only increases the recombination probability of interlayer excitons but also saturates the charge‐transfer process. This scenario is further confirmed by a careful examination of trion binding energy of WS2, which nonlinearly increases with the increase of the excitation power before reaching a maximum of about 75 meV. These investigations provide a better understanding of interlayer excitons and trions in HBs, which may provoke further explorations of excitonic physics as well as TMDs‐based devices.  相似文献   

18.
A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices.  相似文献   

19.
Highly photosensitive nanocrystal (NC) skins based on exciton funneling are proposed and demonstrated using a graded bandgap profile across which no external bias is applied in operation for light‐sensing. Four types of gradient NC skin devices (GNS) made of NC monolayers of distinct sizes with photovoltage readout are fabricated and comparatively studied. In all structures, polyelectrolyte polymers separating CdTe NC monolayers set the interparticle distances between the monolayers of ligand‐free NCs to <1 nm. In this photosensitive GNS platform, excitons funnel along the gradually decreasing bandgap gradient of cascaded NC monolayers, and are finally captured by the NC monolayer with the smallest bandgap interfacing the metal electrode. Time‐resolved measurements of the cascaded NC skins are conducted at the donor and acceptor wavelengths, and the exciton transfer process is confirmed in these active structures. These findings are expected to enable large‐area GNS‐based photosensing with highly efficient full‐spectrum conversion.  相似文献   

20.
A widely-used naphthalenediimide(NDI) based electron acceptor P(NDI2OD-T2) with different numberaverage molecular weight(M_n) of 38(N2200_L), 56(N2200_M), 102(N2200_H) kD a were successfully prepared.The effect of molecular-weight on the performance of all-polymer solar cells based on Poly(5-(5-(4,8-bis(5-decylthiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithophen-2-yl)thiophen-2-yl)-6,7-difluoro-8-(5-methylthiophen-2-yl)-2,3-bis(3-(octyloxy)phenyl)quinoxaline)(P2F-DE):N2200 was systematically investigated. The results reveal that N2200 with increased Mn show enhanced intermolecular interactions, resulting in improved light absorption and electron mobility. However, the strong aggregation trend of N2200_H can cause unfavorable morphology for exciton dissociation and carrier transport. The blend film using N2200 with moderate Mn actually develops more ideal phase segregation for efficient charge separation and transport, leading to balanced electron/hole mobility and less carrier recombination. Consequently, all-polymer solar cells employing P2F-DE as the electron donor and N2200_M as the electron acceptor show the highest efficiency of 4.81%, outperforming those using N2200_L(3.07%)and N2200_H(3.92%). Thus, the Mn of the polymer acceptor plays an important role in all-polymer solar cells, which allows it to be an effective parameter for the adjustment of the device morphology and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号