首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electron-transport layer (ETL) with appropriate energy alignment and enhanced charge transfer is critical for perovskite solar cells (PSCs). However, interfacial energy level mismatch limits the electrical performance of PSCs, particularly the open-circuit voltage (VOC). Herein, a simple low-temperature-processed In2O3/SnO2 bilayer ETL is developed and used for fabricating a new PSC device. The presence of In2O3 results in uniform, compact, and low-trap-density perovskite films. Moreover, the conduction band of In2O3 is shallower than that of Sn-doped In2O3 (ITO), enhancing the charge transfer from perovskite to ETL, thus minimizing VOC loss at the perovskite and ETL interface. A planar PSC with a power conversion efficiency of 23.24% (certified efficiency of 22.54%) is obtained. A high VOC of 1.17 V is achieved with the potential loss at only 0.36 V. In contrast, devices based on single SnO2 layers achieve 21.42% efficiency with a VOC of 1.13 V. In addition, the new device maintains 97.5% initial efficiency after 80 d in N2 without encapsulation and retains 91% of its initial efficiency after 180 h under 1 sun continuous illumination. The results demonstrate and pave the way for the development of efficient photovoltaic devices.  相似文献   

2.
Perovskite solar cells with all‐organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high‐temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron‐transporting layer of inverted perovskite cells affects the open‐circuit voltage (VOC). It is shown that nonradiative recombination mediated by the electron‐transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge‐blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.  相似文献   

3.
Although inorganic perovskite solar cells (PSCs) are promising in thermal stability, their large open-circuit voltage (VOC) deficit and difficulty in large-area preparation still limit their development toward commercialization. The present work tailors C60 via a codoping strategy to construct an efficient electron-transporting layer (ETL), leading to a significant improvement in VOC of the inverted inorganic CsPbI2Br PSC. Specifically, tris(pentafluorophenyl)borane (TPFPB) is introduced as a dopant to lower the lowest unoccupied molecular orbital (LUMO) level of the C60 layer by forming a Lewis acidic adduct. The enlarged free energy difference provides a favorable enhancement in electron injection and thereby reduces charge recombination. Subsequently, a nonhygroscopic lithium salt (LiClO4) is added to increase electron mobility and conductivity of the film, leading to a reduction in the device hysteresis and facilitating the fabrication of a large-area device. Finally, the as-optimized inorganic CsPbI2Br PSCs gain a champion power conversion efficiency (PCE) of 15.19%, with a stabilized power output (SPO) of 14.21% (0.09 cm2). More importantly, this work also demonstrates a record PCE of 14.44% for large-area inorganic CsPbI2Br PSCs (1.0 cm2) and reports the first inorganic perovskite solar module with the excellent efficiency exceeding 12% (10.92 cm2) by a self-developed quasi-curved heating method.  相似文献   

4.
Carbon‐based perovskite solar cells (PVSCs) without hole transport materials are promising for their high stability and low cost, but the electron transporting layer (ETL) of TiO2 is notorious for inflicting hysteresis and instability. In view of its electron accepting ability, C60 is used to replace TiO2 for the ETL, forming a so‐called all carbon based PVSC. With a device structure of fluorine‐doped tin oxide (FTO)/C60/methylammonium lead iodide (MAPbI3)/carbon, a power conversion efficiency (PCE) is attained up to 15.38% without hysteresis, much higher than that of the TiO2 ones (12.06% with obvious hysteresis). The C60 ETL is found to effectively improve electron extraction, suppress charge recombination, and reduce the sub‐bandgap states at the interface with MAPbI3. Moreover, the all carbon based PVSCs are shown to resist moisture and ion migration, leading to a much higher operational stability under ambient, humid, and light‐soaking conditions. To make it an even more genuine all carbon based PVSC, it is further attempted to use graphene as the transparent conductive electrode, reaping a PCE of 13.93%. The high performance of all carbon based PVSCs stems from the bonding flexibility and electronic versatility of carbon, promising commercial developments on account of their favorable balance of cost, efficiency, and stability.  相似文献   

5.
Efficient wide‐bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky–Queisser limit, but they suffer from a larger open circuit voltage (VOC) deficit than narrower bandgap ones. Here, it is shown that one major limitation of VOC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene‐C60 bisadduct (ICBA) with higher‐lying lowest‐unoccupied‐molecular‐orbital is needed for WBG perovskite solar cells, while its energy‐disorder needs to be minimized before a larger VOC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA‐tran3 from the as‐synthesized ICBA‐mixture. WBG perovskite solar cells with ICBA‐tran3 show enhanced VOC by 60 mV, reduced VOC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels.  相似文献   

6.
In this study, the fabrication of highly efficient and durable flexible inverted perovskite solar cells (PSCs) is reported. Presynthesized, solution‐derived NiOx and ZnO nanoparticles films are employed at room temperature as a hole transport layer (HTL) and electron transport layer (ETL), respectively. The triple cation perovskite films are produced in a single step and for the sake of comparison, ultrasmooth and pinhole‐free absorbing layers are also fabricated using MAPbI3 perovskite. The triple cation perovskite cells exhibit champion power conversion efficiencies (PCEs) of 18.6% with high stabilized power conversion efficiency of 17.7% on rigid glass/indium tin oxide (ITO) substrates (comparing with 16.6% PCE with 16.1% stabilized output efficiency for the flexible polyethylene naphthalate (PEN)/thin film barrier/ITO substrates). More interestingly, the durability of flexible PSC under simulation of operative condition is proved. Over 85% of the maximum stabilized output efficiency is retained after 1000 h aging employing a thin MAPbI3 perovskite (over 90% after 500 h with a thick triple cation perovskite). This result is comparable to a similar state of the art rigid PSC and represents a breakthrough in the stability of flexible PSC using ETLs and HTLs compatible with roll to roll production speed, thanks to their room temperature processing.  相似文献   

7.
Halide perovskite films processed from solution at low‐temperature offer promising opportunities to make flexible solar cells. However, the brittleness of perovskite films is an issue for mechanical stability in flexible devices. Herein, photo‐crosslinked [6,6]‐phenylC61‐butyric oxetane dendron ester (C‐PCBOD) is used to improve the mechanical stability of methylammonium lead iodide (MAPbI3) perovskite films. Also, it is demonstrated that C‐PCBOD passivates the grain boundaries, which reduces the formation of trap states and enhances the environmental stability of MAPbI3. Thus, MAPbI3 perovskite solar cells are prepared on solid and flexible substrates with record efficiencies of 20.4% and 18.1%, respectively, which are among the highest ever reported for MAPbI3 on both flexible and solid substrates. The result of this work provides a step improvement toward stable and efficient flexible perovskite solar cells.  相似文献   

8.
Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley–Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi‐Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state‐of‐the‐art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump‐probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome—paving the way to the thermodynamic efficiency limit.  相似文献   

9.
Current‐density–voltage (JV) hysteresis in perovskite solar cells (PSCs) is a critical issue because it is related to power conversion efficiency and stability. Although parameters affecting the hysteresis have been already reported and reviewed, little investigation is reported on scan‐direction‐dependent JV curves depending on perovskite composition. This review investigates JV hysteric behaviors depending on perovskite composition in normal mesoscopic and planar structure. In addition, methodologies toward hysteresis‐free PSCs are proposed. There is a specific trend in hysteresis in terms of JV curve shape depending on composition. Ion migration combined with nonradiative recombination near interfaces plays a critical role in generating hysteresis. Interfacial engineering is found to be an effective method to reduce the hysteresis; however, bulk defect engineering is the most promising method to remove the hysteresis. Among the studied methods, KI doping is proved to be a universal approach toward hysteresis‐free PSCs regardless of perovskite composition. It is proposed from the current studies that engineering of perovskite film near the electron transporting layer (ETL) and the hole transporting layer (HTL) is of vital importance for achieving hysteresis‐free PSCs and extremely high efficiency.  相似文献   

10.
In hybrid organic–inorganic lead halide perovskite solar cells, the energy loss is strongly associated with nonradiative recombination in the perovskite layer and at the cell interfaces. Here, a simple but effective strategy is developed to improve the cell performance of perovskite solar cells via the combination of internal doping by a ferroelectric polymer and external control by an electric field. A group of polarized ferroelectric (PFE) polymers are doped into the methylammonium lead iodide (MAPbI3) layer and/or inserted between the perovskite and the hole‐transporting layers to enhance the build‐in field (BIF), improve the crystallization of MAPbI3, and regulate the nonradiative recombination in perovskite solar cells. The PFE polymer‐doped MAPbI3 shows an orderly arrangement of MA+ cations, resulting in a preferred growth orientation of polycrystalline perovskite films with reduced trap states. In addition, the BIF is enhanced by the widened depletion region in the device. As an interfacial dipole layer, the PFE polymer plays a critical role in increasing the BIF. This combined effect leads to a substantial reduction in voltage loss of 0.14 V due to the efficient suppression of nonradiative recombination. Consequently, the resulting perovskite solar cells present a power conversion efficiency of 21.38% with a high open‐circuit voltage of 1.14 V.  相似文献   

11.
Wide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (VOC) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces VOC loss, and improves device stability. As a result, 1.68 eV wide-bandgap devices with an inverted structure deliver a VOC of 1.20 V with an efficiency of 20.38%. The unencapsulated GCDC-treated devices are considerably more stable than the control devices, retaining 92% of their initial efficiency after 1392 h storage under ambient conditions and retaining 93% after heating at 65 °C for 1128 h in an N2 atmosphere. This strategy of mitigating ion migration via anchoring a nonconductive layer provides a simple approach to achieving efficient and stable wide-bandgap PSCs.  相似文献   

12.
Employing a layer of bulk‐heterojunction (BHJ) organic semiconductors on top of perovskite to further extend its photoresponse is considered as a simple and promising way to enhance the efficiency of perovskite‐based solar cells, instead of using tandem devices or near infrared (NIR)‐absorbing Sn‐containing perovskites. However, the progress made from this approach is quite limited because very few such hybrid solar cells can simultaneously show high short‐circuit current (JSC) and fill factor (FF). To find an appropriate NIR‐absorbing BHJ is essential for highly efficient, organic, photovoltaics (OPV)/perovskite hybrid solar cells. The materials involved in the BHJ layer not only need to have broad photoresponse to increase JSC, but also possess suitable energy levels and high mobility to afford high VOC and FF. In this work, a new porphyrin is synthesized and blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) to function as an efficient BHJ for OPV/perovskite hybrid solar cells. The extended photoresponse, well‐matched energy levels, and high hole mobility from optimized BHJ morphology afford a very high power conversion efficiency (PCE) (19.02%) with high Voc, JSC, and FF achieved simultaneously. This is the highest value reported so far for such hybrid devices, which demonstrates the feasibility of further improving the efficiency of perovskite devices.  相似文献   

13.
Wide-bandgap perovskite solar cells (PSCs) have attracted a lot of attention due to their application in tandem solar cells. However, the open-circuit voltage (VOC) of wide-bandgap PSCs is dramatically limited by high defect density existing at the interface and bulk of the perovskite film. Here, an anti-solvent optimized adduct to control perovskite crystallization strategy that reduces nonradiative recombination and minimizes VOC deficit is proposed. Specifically, an organic solvent with similar dipole moment, isopropanol (IPA) is added into ethyl acetate (EA) anti-solvent, which is beneficial to form PbI2 adducts with better crystalline orientation and direct formation of α-phase perovskite. As a result, EA-IPA (7-1) based 1.67 eV PSCs deliver a power conversion efficiency of 20.06% and a VOC of 1.255 V, which is one of the remarkable values for wide-bandgap around 1.67 eV. The findings provide an effective strategy for controlling crystallization to reduce defect density in PSCs.  相似文献   

14.
Organic–inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy‐loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p‐doped hole transport layers (HTLs), since the F4‐TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open‐circuit voltages (VOC). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the VOC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs.  相似文献   

15.
The poor long‐term stability of organic–inorganic hybrid halide perovskite solar cells (pero‐SCs) remains a big challenge for their commercialization. Although strategies such as encapsulation, doping, and passivation have been reported, there remains a lack of understanding of the water resistance and thermal stability of pero‐SCs. A fullerene derivative, [6,6]‐phenyl‐C61‐butyric acid‐N,N‐dimethyl‐3‐(2‐thienyl)propanam ester (PCBB‐S‐N) containing a functional sulfur atom and C60, is synthesized and employed as electron transporting layer (ETL)/intermediary layer to targetedly heal the multitype defects in pero‐SCs or assist the growth of ETL, such as [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), in planar p‐i‐n pero‐SCs. The repaired pero‐SCs can not only dramatically improve their power conversion efficiencies, but also address stability issues under moisture and high temperature. The corresponding mechanism of PCBB‐S‐N with targeted therapy effect in a device is systematically investigated by both experiments and theoretical calculation. This work demonstrates that the proposed fullerene derivative with finely tuned chemical structure can be a promising ETL candidate or intermediary to approach stable and efficient planar p‐i‐n pero‐SCs.  相似文献   

16.
2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite‐based cells. Herein, 2D (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 perovskite cells with different numbers of [PbI6]4? sheets (n = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open‐circuit voltage (VOC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi‐Fermi level splitting matches the device VOC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements.  相似文献   

17.
Cesium‐based inorganic perovskite solar cells (PSCs) are promising due to their potential for improving device stability. However, the power conversion efficiency of the inorganic PSCs is still low compared with the hybrid PSCs due to the large open‐circuit voltage (VOC) loss possibly caused by charge recombination. The use of an insulated shunt‐blocking layer lithium fluoride on electron transport layer SnO2 for better energy level alignment with the conduction band minimum of the CsPbI3‐xBrx and also for interface defect passivation is reported. In addition, by incorporating lead chloride in CsPbI3‐xBrx precursor, the perovskite film crystallinity is significantly enhanced and the charge recombination in perovksite is suppressed. As a result, optimized CsPbI3‐xBrx PSCs with a band gap of 1.77 eV exhibit excellent performance with the best VOC as high as 1.25 V and an efficiency of 18.64%. Meanwhile, a high photostability with a less than 6% efficiency drop is achieved for CsPbI3‐xBrx PSCs under continuous 1 sun equivalent illumination over 1000 h.  相似文献   

18.
Organometallic halide perovskites solar cells are fabricated on nano‐scaled corrugated substrates using a sequential deposition method. The corrugated substrates are fabricated using colloidal lithography followed by reactive ion etching. The corrugated structure is found to accelerate the chemical reaction between the sequentially deposited lead iodide (PbI2) and methyl ammonium iodide layers to form stoichiometric perovskite films, and the corrugated morphology is preserved at the interface of the hole transport layer (HTL) and the perovskite layer. The shunt resistance of the corrugated devices is found to be higher than that of the planar devices, leading to a higher open circuit voltage (VOC) and fill factor (FF) in the corrugated devices. Finite‐difference time‐domain simulation is carried out on both planar and corrugated devices. The results revealed that light absorption is enhanced in the corrugated devices due to the corrugated HTL/perovskite interface, resulting in a significantly higher short circuit current (JSC) observed in the corrugated devices. As a result, the average power conversion efficiency increases from 8.7% for the planar devices to 13% for the corrugated devices.  相似文献   

19.
Perovskite solar cells (PSCs) have rapidly developed and achieved power conversion efficiencies of over 20% with diverse technical routes. Particularly, planar-structured PSCs can be fabricated with low-temperature (≤150 °C) solution-based processes, which is energy efficient and compatible with flexible substrates. Here, the efficiency and stability of planar PSCs are enhanced by improving the interface contact between the SnO2 electron-transport layer (ETL) and the perovskite layer. A biological polymer (heparin potassium, HP) is introduced to regulate the arrangement of SnO2 nanocrystals, and induce vertically aligned crystal growth of perovskites on top. Correspondingly, SnO2–HP-based devices can demonstrate an average efficiency of 23.03% on rigid substrates with enhanced open-circuit voltage (VOC) of 1.162 V and high reproducibility. Attributed to the strengthened interface binding, the devices obtain high operational stability, retaining 97% of their initial performance (power conversion efficiency, PCE > 22%) after 1000 h operation at their maximum power point under 1 sun illumination. Besides, the HP-modified SnO2 ETL exhibits promising potential for application in flexible and large-area devices.  相似文献   

20.
The quality of perovskite films is critical to the performance of perovskite solar cells. However, it is challenging to control the crystallinity and orientation of solution‐processed perovskite films. Here, solution‐phase van der Waals epitaxy growth of MAPbI3 perovskite films on MoS2 flakes is reported. Under transmission electron microscopy, in‐plane coupling between the perovskite and the MoS2 crystal lattices is observed, leading to perovskite films with larger grain size, lower trap density, and preferential growth orientation along (110) normal to the MoS2 surface. In perovskite solar cells, when perovskite active layers are grown on MoS2 flakes coated on hole‐transport layers, the power conversion efficiency is substantially enhanced for 15%, relatively, due to the increased crystallinity of the perovskite layer and the improved hole extraction and transfer rate at the interface. This work paves a way for preparing high‐performance perovskite solar cells and other optoelectronic devices by introducing 2D materials as interfacial layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号