首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach to fabricate flexible organic solar cells is proposed without indium tin oxide (ITO) and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using junction‐free metal nanonetworks (NNs) as transparent electrodes. The metal NNs are monolithically etched using nanoscale shadow masks, and they exhibit excellent optoelectronic performance. Furthermore, the optoelectrical properties of the NNs can be controlled by both the initial metal layer thickness and NN density. Hence, with an extremely thin silver layer, the appropriate density control of the networks can lead to high transmittance and low sheet resistance. Such NNs can be utilized for thin‐film devices without planarization by conductive materials such as PEDOT:PSS. A highly efficient flexible organic solar cell with a power conversion efficiency (PCE) of 10.6% and high device yield (93.8%) is fabricated on PEDOT‐free and ITO‐free transparent electrodes. Furthermore, the flexible solar cell retains 94.3% of the initial PCE even after 3000 bending stress tests (strain: 3.13%).  相似文献   

2.
The efficiency of organic solar cells can benefit from multijunction device architectures, in which energy losses are substantially reduced. Herein, recent developments in the field of solution‐processed multijunction organic solar cells are described. Recently, various strategies have been investigated and implemented to improve the performance of these devices. Next to developing new materials and processing methods for the photoactive and interconnecting layers, specific layers or stacks are designed to increase light absorption and improve the photocurrent by utilizing optical interference effects. These activities have resulted in power conversion efficiencies that approach those of modern thin film photovoltaic technologies. Multijunction cells require more elaborate and intricate characterization procedures to establish their efficiency correctly and a critical view on the results and new insights in this matter are discussed. Application of multijunction cells in photoelectrochemical water splitting and upscaling toward a commercial technology is briefly addressed.  相似文献   

3.
4.
5.
6.
7.
High efficiency, excellent stability, and air processability are all important factors to consider in endeavoring to push forward the real‐world application of organic solar cells. Herein, an air‐processed inverted photovoltaic device built upon a low‐bandgap, air‐stable, phenanthridinone‐based ter‐polymer (C150H218N6O6S4)n (PDPPPTD) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) without involving any additive engineering processes yields a high efficiency of 6.34%. The PDPPPTD/PC61BM devices also exhibit superior thermal stability and photo‐stability as well as long‐term stability in ambient atmosphere without any device encapsulation, which show less performance decay as compared to most of the reported organic solar cells. In view of their great potential, solvent additive engineering via adding p‐anisaldehyde (AA) is attempted, leading to a further improved efficiency of 7.41%, one of the highest efficiencies for all air‐processed and stable organic photovoltaic devices. Moreover, the device stability under different ambient conditions is also further improved with the AA additive engineering. Various characterizations are conducted to probe the structural, morphology, and chemical information in order to correlate the structure with photovoltaic performance. This work paves a way for developing a new generation of air‐processable organic solar cells for possible commercial application.  相似文献   

8.
9.
In this paper, two near‐infrared absorbing molecules are successfully incorporated into nonfullerene‐based small‐molecule organic solar cells (NFSM‐OSCs) to achieve a very high power conversion efficiency (PCE) of 12.08%. This is achieved by tuning the sequentially evolved crystalline morphology through combined solvent additive and solvent vapor annealing, which mainly work on ZnP‐TBO and 6TIC, respectively. It not only helps improve the crystallinity of the ZnP‐TBO and 6TIC blend, but also forms multilength scale morphology to enhance charge mobility and charge extraction. Moreover, it simultaneously reduces the nongeminate recombination by effective charge delocalization. The resultant device performance shows remarkably enhanced fill factor and Jsc. These result in a very respectable PCE, which is the highest among all NFSM‐OSCs and all small‐molecule binary solar cells reported so far.  相似文献   

10.
11.
Two novel wide‐bandgap copolymers, PBDT‐TDZ and PBDTS‐TDZ, are developed based on 1,3,4‐thiadiazole (TDZ) and benzo[1,2‐b:4,5‐b′]dithiophene (BDT) building blocks. These copolymers exhibit wide bandgaps over 2.07 eV and low‐lying highest occupied molecular orbital (HOMO) levels below −5.35 eV, which match well with the typical low‐bandgap acceptor of ITIC, resulting in a good complementary absorption from 300 to 900 nm and a low HOMO level offset (≤0.13 eV). Compared to PBDT‐TDZ, PBDTS‐TDZ with alkylthio side chains exhibits the stronger optical absorption, lower‐lying HOMO level, and higher crystallinity. By using a single green solvent of o‐xylene, PBDTS‐TDZ:ITIC devices exhibit a large open‐circuit voltage (Voc) up to 1.10 eV and an extremely low energy loss (Eloss) of 0.48 eV. At the same time, the desirable high short‐circuit current density (Jsc) of 17.78 mA cm−2 and fill factor of 65.4% are also obtained, giving rise to a high power conversion efficiency (PCE) of 12.80% without any additive and post‐treatment. When adopting a homotandem device architecture, the PCE is further improved to 13.35% (certified as 13.19%) with a much larger Voc of 2.13 V, which is the best value for any type of homotandem organic solar cells reported so far.  相似文献   

12.
Recent advances in nonfullerene acceptors (NFAs) have enabled the rapid increase in power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells. However, this progress is achieved using highly toxic solvents, which are not suitable for the scalable large‐area processing method, becoming one of the biggest factors hindering the mass production and commercial applications of OPVs. Therefore, it is of great importance to get good eco‐compatible processability when designing efficient OPV materials. Here, to achieve high efficiency and good processability of the NFAs in eco‐compatible solvents, the flexible alkyl chains of the highly efficient NFA BTP‐4F‐8 (also known as Y6) are modified and BTP‐4F‐12 is synthesized. Combining with the polymer donor PBDB‐TF, BTP‐4F‐12 shows the best PCE of 16.4%. Importantly, when the polymer donor PBDB‐TF is replaced by T1 with better solubility, various eco‐compatible solvents can be applied to fabricate OPV cells. Finally, over 14% efficiency is obtained with tetrahydrofuran (THF) as the processing solvent for 1.07 cm2 OPV cells by the blade‐coating method. These results indicate that the simple modification of the side chain can be used to tune the processability of active layer materials and thus make it more applicable for the mass production with environmentally benign solvents.  相似文献   

13.
14.
15.
A novel wide‐bandgap conjugated copolymer based on an imide‐functionalized benzotriazole building block containing a siloxane‐terminated side‐chain is developed. This copolymer is successfully used to fabricate highly efficient all‐polymer solar cells (all‐PSCs) processed at room temperature with the green‐solvent 2‐methyl‐tetrahydrofuran. When paired with a naphthalene diimide‐based polymer electron‐acceptor, the all‐PSC exhibits a maximum power conversion efficiency (PCE) of 10.1%, which is the highest value so far reported for an all‐PSC. Of particular interest is that the PCE remains 9.4% after thermal annealing at 80 °C for 24 h. The resulting high efficiency is attributed to a combination of high and balanced bulky charge carrier mobility, favorable face‐on orientation, and high crystallinity. These observations indicate that the resulting copolymer can be a promising candidate toward high‐performance all‐PSCs for practical applications.  相似文献   

16.
All‐inorganic CsPbIBr2 perovskite has recently received growing attention due to its balanced band gap and excellent environmental stability. However, the requirement of high‐temperature processing limits its application in flexible devices. Herein, a low‐temperature seed‐assisted growth (SAG) method for high‐quality CsPbIBr2 perovskite films through reducing the crystallization temperature by introducing methylammonium halides (MAX, X = I, Br, Cl) is demonstrated. The mechanism is attributed to MA cation based perovskite seeds, which act as nuclei lowering the formation energy of CsPbIBr2 during the annealing treatment. It is found that methylammonium bromide treated perovskite (Pvsk‐Br) film fabricated at low temperature (150 °C) shows micrometer‐sized grains and superior charge dynamic properties, delivering a device with an efficiency of 10.47%. Furthermore, an efficiency of 11.1% is achieved for a device based on high‐temperature (250 °C) processed Pvsk‐Br film via the SAG method, which presents the highest reported efficiency for inorganic CsPbIBr2 solar cells thus far.  相似文献   

17.
To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small‐molecule acceptors, IT‐2Cl and IT‐4Cl, is designed and synthesized by introducing easy‐synthesis chlorine substituents onto the indacenodithieno[3,2‐b]thiophene units. The unique feature of the large dipole moment of the C? Cl bond enhances the intermolecular charge‐transfer effect between the donor–acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of C? Cl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low‐lying highest occupied molecular orbital level. In addition, since IT‐2Cl and IT‐4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.  相似文献   

18.
19.
20.
The stability of a tin‐based perovskite solar cell is a major challenge. Here, hybrid tin‐based perovskite solar cells in a new series that incorporate a nonpolar organic cation, guanidinium (GA+), in varied proportions into the formamidinium (FA+) tin triiodide perovskite (FASnI3) crystal structure in the presence of 1% ethylenediammonium diiodide (EDAI2) as an additive, are reported. The device performance is optimized at a precursor ratio (GAI:FAI) of 20:80 to attain a power conversion efficiency (PCE) of 8.5% when prepared freshly; the efficiencies continuously increase to attain a record PCE of 9.6% after storage in a glove‐box environment for 2000 h. The hybrid perovskite works stably under continuous 1 sun illumination for 1 h and storage in air for 6 days without encapsulation. Such a tin‐based perovskite passes all harsh standard tests, and the efficiency of a fresh device, 8.3%, is certified. The great performance and stability of the device reported herein attains a new milestone for lead‐free perovskite solar cells on a path toward commercial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号