首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonfullerene (NF) organic solar cells (OSCs) have been attracting significant attention in the past several years. It is still challenging to achieve high‐performance flexible NF OSCs. NF acceptors are chemically reactive and tend to react with the low‐temperature‐processed low‐work‐function (low‐WF) interfacial layers, such as polyethylenimine ethoxylated (PEIE), which leads to the “S” shape in the current‐density characteristics of the cells. In this work, the chemical interaction between the NF active layer and the polymer interfacial layer of PEIE is deactivated by increasing its protonation. The PEIE processed from aqueous solution shows more protonated N+ than that processed from isopropyl alcohol solution, observed from X‐ray photoelectron spectroscopy. NF solar cells (active layer: PCE‐10:IEICO‐4F) with the protonated PEIE interfacial layer show an efficiency of 13.2%, which is higher than the reference cells with a ZnO interlayer (12.6%). More importantly, the protonated PEIE interfacial layer processed from aqueous solution does not require a further thermal annealing treatment (only processing at room temperature). The room‐temperature processing and effective WF reduction enable the demonstration of high‐performance (12.5%) flexible NF OSCs.  相似文献   

2.
Currently, most of the promising organic solar cells (OSCs) are based on low bandgap polymer donors with deep‐lying highest occupied molecular orbit (HOMO) levels, which impose the challenges for device architecture design. In terms of fast charge extraction and suppression of bimolecular recombination, elaborate interface design in low bandgap OSCs is of significance to further boost their ultimate efficiency. In this work, a facile solution‐processed functionalized single wall carbon nanotube (f‐SWCNT) mesh/self‐assembled molecule (SAM) hybrid structure is reported as hole transport layer (HTL) in low bandgap OSCs. The effectiveness of such hybrid HTL originates from two aspects: (i) SAM layer can effectively realize Ohmic contact between f‐SWCNT and low bandgap polymer donors with deep‐lying HOMO levels due to the reduction of interface energy barrier; (ii) f‐SWCNT mesh can provide fast hole extraction pathways to quickly sweep out photogenerated charges. As a consequence of synergic effects of such hybrid HTL, both photocurrent and fill factor are greatly enhanced due to the reduced bimolecular recombination. Together with careful light management by using ZnO optical spacer, a high efficiency of 10.5% has been achieved. This work offers an excellent choice for large‐scale processable and effective HTL toward the application in low bandgap OSCs with deep‐lying energy levels.  相似文献   

3.
A lot of research, mostly using electron‐injection layers (EILs) composed of alkali‐metal compounds has been reported with a view to increase the efficiency of solution‐processed organic light‐emitting devices (OLEDs). However, these materials have intractable properties, such as a strong affinity for moisture, which cause the degradation of OLEDs. Consequently, optimal EIL materials should exhibit high electron‐injection efficiency as well as be stable in air. In this study, polymer light‐emitting devices (PLEDs) based on the commonly used yellow‐fluorescence‐emitting polymer F8BT, which utilize poly(diallyldimethylammonium)‐based polymeric ionic liquids, are experimentally and analytically investigated. As a result, the optimized PLED employing an EIL comprising poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (poly(DDA)TFSI), which is expected to display good moisture resistance because of water repellency of fluorocarbon groups, exhibits excellent storage stability in air and electroluminescence performance with a low turn‐on voltage of 2.01 V, maximum external quantum efficiency of 9.00%, current efficiency of 30.1 cd A?1, and power efficiency of 32.4 lm W?1. The devices with poly(DDA)TFSI show one of the highest efficiencies as compared to the reported standard PLEDs. Moreover, poly(DDA)TFSI is applied as a hole‐injection layer (HIL). The optimized PLED using poly(DDA)TFSI as the HIL exhibits performances comparable to those of a device that uses a conventional poly(3,4‐ethylenedioxy‐thiophene):poly(4‐styrenesulfonate) HIL.  相似文献   

4.
Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.  相似文献   

5.
Despite nearly two decades of research, the absence of ideal, flexible, and transparent electrodes has been the biggest bottleneck for realizing flexible and printable electronics via roll‐to‐roll (R2R) method. A fabrication of poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate):graphene:ethyl cellulose (PEDOT:PSS:G:EC) hybrid electrodes by R2R process, which allows for the elimination of strong acid treatment. The high‐performance flexible printable electrode includes a transmittance (T) of 78% at 550 nm and a sheet resistance of 13 Ω sq−1 with excellent mechanical stability. These features arise from the PSS interacting strongly with the ethyoxyl groups from EC promoting a favorable phase separation between PEDOT and PSS chains, and the highly uniform and conductive G:EC enable rearrangement of the PEDOT chains with more expanded conformation surrounded by G:EC via the π–π interaction between G:EC and PEDOT. The hybrid electrodes are fully functional as universal electrodes for outstanding flexible electronic applications. Organic solar cells based on the hybrid electrode exhibit a high power conversion efficiency of 9.4% with good universality for active layer. Moreover, the organic light‐emitting diodes and photodetector devices hold the same level to or outperform those based on indium tin oxide flexible transparent electrodes.  相似文献   

6.
The blossoming of organic solar cells (OSCs) has triggered enormous commercial applications, due to their high‐efficiency, light weight, and flexibility. However, the lab‐to‐manufacturing translation of the praisable performance from lab‐scale devices to industrial‐scale modules is still the Achilles' heel of OSCs. In fact, it is urgent to explore the mechanism of morphological evolution in the bulk heterojunction (BHJ) with different coating/printing methods. Here, a general approach to upscale flexible organic photovoltaics to module scale without obvious efficiency loss is demonstrated. The shear impulse during the coating/printing process is first applied to control the morphology evolution of the BHJ layer for both fullerene and nonfullerene acceptor systems. A quantitative transformation factor of shear impulse between slot‐die printing and spin‐coating is detected. Compelling results of morphological evolution, molecular stacking, and coarse‐grained molecular simulation verify the validity of the impulse translation. Accordingly, the efficiency of flexible devices via slot‐die printing achieves 9.10% for PTB7‐Th:PC71BM and 9.77% for PBDB‐T:ITIC based on 1.04 cm2 . Furthermore, 15 cm2 flexible modules with effective efficiency up to 7.58% (PTB7‐Th:PC71BM) and 8.90% (PBDB‐T:ITIC) are demonstrated with satisfying mechanical flexibility and operating stability. More importantly, this work outlines the shear impulse translation for organic printing electronics.  相似文献   

7.
Organic solar cells (OSCs) are one of the most promising cost‐effective options for utilizing solar energy, and, while the field of OSCs has progressed rapidly in device performance in the past few years, the stability of nonfullerene OSCs has received less attention. Developing devices with both high performance and long‐term stability remains challenging, particularly if the material choice is restricted by roll‐to‐roll and benign solvent processing requirements and desirable mechanical durability. Building upon the ink (toluene:FTAZ:IT‐M) that broke the 10% benchmark when blade‐coated in air, a second donor material (PBDB‐T) is introduced to stabilize and enhance performance with power conversion efficiency over 13% while keeping toluene as the solvent. More importantly, the ternary OSCs exhibit excellent thermal stability and storage stability while retaining high ductility. The excellent performance and stability are mainly attributed to the inhibition of the crystallization of nonfullerene small‐molecular acceptors (SMAs) by introducing a stiff donor that also shows low miscibility with the nonfullerene SMA and a slightly higher highest occupied molecular orbital (HOMO) than the host polymer. The study indicates that improved stability and performance can be achieved in a synergistic way without significant embrittlement, which will accelerate the future development and application of nonfullerene OSCs.  相似文献   

8.
Improved performance in plasmonic organic solar cells (OSCs) and organic light‐emitting diodes (OLEDs) via strong plasmon‐coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core–shell silver–silica nanoparticles (Ag@SiO2NPs) is demonstrated. NP‐enhanced plasmonic AgNW (Ag@SiO2NP–AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon‐coupling effect caused by decorating core–shell Ag@SiO2NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A?1 (at 3.2 V) and a power efficiency of 25.14 lm W?1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO2NP–AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high‐performance OODs, which can be further explored in various plasmonic and optoelectronic devices.  相似文献   

9.
Herein, poly(vinylpyrrolidone) (PVP) is used as the cathode interlayer (CIL) through the self‐organization method in inverted organic solar cells (OSCs). By coating a solution of PVP and active layer materials onto a glass/indium tin oxide (ITO) substrate, the PVP can segregate to the near ITO side due to its high surface energy and strong intermolecular interaction with the ITO electrode. The power conversion efficiency (PCE) of the obtained OSC device reaches 13.3%, much higher than that of the control device with a PCE of only 10.1%. The improvement results from the increased exciton dissociation efficiency and the depressed trap‐assisted recombination, which can be attributed to the reduced work function of the cathode by the self‐organized PVP. Additionally, the molecular weight of the PVP has almost no influence on the device performance, and the PVP‐modified device presents superior stability. This method can also be applied in other highly efficient fullerene‐free OSCs, and with a fine selection of the active layer, a high PCE of 14.0% is obtained. Overall, this work demonstrates the great potential of the PVP‐based CIL in inverted OSCs fabricated via the self‐organization method.  相似文献   

10.
This paper reports solution‐processed, high‐efficiency polymer light‐emitting diodes fabricated by a new type of roll‐to‐roll coating method under ambient air conditions. A noble roll‐to‐roll cohesive coating system utilizes only natural gravity and the surface tension of the solution to flow out from the capillary to the surface of the substrate. Because this mechanism uses a minimally cohesive solution, the roll‐to‐roll cohesive coating can effectively realize an ultra‐thin film thickness for the electron injection layer. In addition, the roll‐to‐roll cohesive coating enables the fabrication of a thicker polymer anode film more than 250 nm at one time by modification of the surface energy and without wasting the solution. It is observed that the standard sheet resistance deviation of the polymer anode is only 2.32 Ω/□ over 50 000 bending cycles. The standard sheet resistance deviation of the polymer anode in the different bending angles (0 to 180°) is 0.313 Ω/□, but the case of the ITO‐PET is 104.93 Ω/□. The average surface roughness of the polymer anode measured by atomic force microscopy is only 1.06 nm. Because the surface of the polymer anode has a better quality, the leakage current of the polymer light‐emitting diodes (PLEDs) using the polymer anode is much lower than that using the ITO‐PET substrate. The luminous power efficiency of the two devices is 4.13 lm/W for the polymer anode and 3.21 lm/W for the ITO‐PET. Consequently, the PLEDs made by using the polymer anode exhibited 28% enhanced performance because the polymer anode represents not only a higher transparency than the ITO‐PET in the wavelength of 560 nm but also greatly reduced roughness. The optimized the maximum current efficiency and power efficiency of the device show around 6.1 cd/A and 5.1 lm/W, respectively, which is comparable to the case of using the ITO‐glass.  相似文献   

11.
Recent research efforts on solution‐processed semitransparent organic solar cells (OSCs) are presented. Essential properties of organic donor:acceptor bulk heterojunction blends and electrode materials, required for the combination of simultaneous high power conversion efficiency (PCE) and average visible transmittance of photovoltaic devices, are presented from the materials science and device engineering points of view. Aspects of optical perception, charge generation–recombination, and extraction processes relevant for semitransparent OSCs are also discussed in detail. Furthermore, the theoretical limits of PCE for fully transparent OSCs, compared to the performance of the best reported semitransparent OSCs, and options for further optimization are discussed.  相似文献   

12.
The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk‐heterojunction organic solar cells (OSCs) based on nanocomposites of π‐conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost‐effective, stable, and high‐performance photovoltaic modules fabricated on large‐area flexible plastic substrates via high‐volume/throughput roll‐to‐roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large‐scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state‐of‐the‐art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques.  相似文献   

13.
Interface properties are of critical importance for high‐performance bulk‐heterojunction (BHJ) organic solar cells (OSCs). Here, a universal interface approach to tune the surface free energy (γS) of hole‐transporting layers (HTLs) in a wide range through introducing poly(styrene sulfonic acid) sodium salts or nickel formate dihydrate into poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is reported. Based on the optimal γS of HTLs and thus improved face‐on molecular ordering in BHJs, enhanced fill factor and power conversion efficiencies in both fullerene and nonfullerene OSCs are achieved, which is attributed to the increased charge carrier mobility and sweepout with reduced recombination. It is found that the face‐on orientation‐preferred BHJs (PBDB‐TF:PC71BM, PBDB‐T:PC71BM, and PBDB‐TF:IT‐4F) favor HTLs with higher γS while the edge‐on orientation‐preferred BHJs (PDCDT:PC71BM, P3HT:PC71BM and PDCBT:ITIC) are partial to HTLs with lower γS. Based on the surface property–morphology–device performance correlations, a suggestion to select a suitable HTL in terms of γS for a specific BHJ with favored molecular arrangement is provided. This work enriches the fundamental understandings on the interface characteristics and morphological control toward high‐efficiency OSCs based on a wide range of BHJ materials.  相似文献   

14.
Implementation of artificial intelligent systems with light‐stimulated synaptic emulators may enhance computational speed by providing devices with high bandwidth, low power computation requirements, and low crosstalk. One of the key challenges is to develop light‐stimulated devices that can response to light signals in a neuron‐/synapse‐like fashion. A simple and effective solution process to fabricate light‐stimulated synaptic transistors (LSSTs) based on inorganic halide perovskite quantum dots (IHP QDs) and organic semiconductors (OSCs) is reported. Blending IHP QDs and OSCs not only improves the charge separation efficiency of the photoexcited charges, but also induces delayed decay of the photocurrent in the IHP QDs/OSCs hybrid film. The enhanced charge separation efficiency results in high photoresponsivity, while the induced delayed decay of the photocurrent is critical to achieving light‐stimulating devices with a memory effect, which are important for achieving high synaptic performance. The LSSTs can respond to light signals in a highly neuron‐/synapse‐like fashion. Both short‐term and long‐term synaptic behaviors have been realized, which may lay the foundation for the future implementation of artificial intelligent systems that are enabled by light signals. More significantly, LSSTs are fabricated by a facile solution process which can be easily applied to large‐scale samples.  相似文献   

15.
In this paper, two near‐infrared absorbing molecules are successfully incorporated into nonfullerene‐based small‐molecule organic solar cells (NFSM‐OSCs) to achieve a very high power conversion efficiency (PCE) of 12.08%. This is achieved by tuning the sequentially evolved crystalline morphology through combined solvent additive and solvent vapor annealing, which mainly work on ZnP‐TBO and 6TIC, respectively. It not only helps improve the crystallinity of the ZnP‐TBO and 6TIC blend, but also forms multilength scale morphology to enhance charge mobility and charge extraction. Moreover, it simultaneously reduces the nongeminate recombination by effective charge delocalization. The resultant device performance shows remarkably enhanced fill factor and Jsc. These result in a very respectable PCE, which is the highest among all NFSM‐OSCs and all small‐molecule binary solar cells reported so far.  相似文献   

16.
Nonfullerene organic solar cells (NFOSCs) are attracting increasing academic and industrial interest due to their potential uses for flexible and lightweight products using low‐cost roll‐to‐roll technology. In this work, two wide bandgap (WBG) polymers, namely P(fTh‐BDT)‐C6 and P(fTh‐2DBDT)‐C6, are designed and synthesized using benzodithiophene (BDT) derivatives. Good oxidation stability and high solubility are achieved by simultaneously introducing fluorine and alkyl chains to a single thiophene (Th) unit. Solid P(fTh‐2DBDT)‐C6 films present WBG optical absorption, suitable frontier orbital levels, and strong π–π stacking effects. In addition, P(fTh‐2DBDT)‐C6 exhibits good solubility in both halogenated and nonhalogenated solvents, suggesting its suitability as donor polymer for NFOSCs. The P(fTh‐2DBDT)‐C6:3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(5‐hexylthienyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene (ITIC‐Th) based device processed using chlorobenzene/1,8‐diiodooctane (CB/DIO) exhibits a remarkably high power conversion efficiency (PCE) of 11.1%. Moreover, P(fTh‐2DBDT)‐C6:ITIC‐Th reaches a high PCE of 10.9% when processed using eco‐friendly solvents, such as o‐xylene/diphenyl ether (DPE). The cell processed using CB/DIO maintains 100% efficiency after 1272 h, while that processed using o‐xylene/DPE presents a 101% increase in efficiency after 768 h and excellent long‐term stability. The results of this study demonstrate that simultaneous fluorination and alkylation are effective methods for designing donor polymers appropriate for high‐performance NFOSCs.  相似文献   

17.
Organometal halide perovskites are new light‐harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low‐temperature process capability. However, the preparation of high‐quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor–solution method is developed to achieve uniform and pinhole‐free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as‐prepared high‐quality perovskite thin films, high‐performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W?1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin‐film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high‐quality perovskite thin films opens up a new avenue to develop high‐performance flexible optoelectronic devices.  相似文献   

18.
Organic semiconductors (OSCs) have been widely studied due to their merits such as mechanical flexibility, solution processability, and large‐area fabrication. However, OSC devices still have to overcome contact resistance issues for better performances. Because of the Schottky contact at the metal–OSC interfaces, a non‐ideal transfer curve feature often appears in the low‐drain voltage region. To improve the contact properties of OSCs, there have been several methods reported, including interface treatment by self‐assembled monolayers and introducing charge injection layers. Here, a selective contact doping of 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) by solid‐state diffusion in poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT) to enhance carrier injection in bottom‐gate PBTTT organic field‐effect transistors (OFETs) is demonstrated. Furthermore, the effect of post‐doping treatment on diffusion of F4‐TCNQ molecules in order to improve the device stability is investigated. In addition, the application of the doping technique to the low‐voltage operation of PBTTT OFETs with high‐k gate dielectrics demonstrated a potential for designing scalable and low‐power organic devices by utilizing doping of conjugated polymers.  相似文献   

19.
Hybrid organic–inorganic perovskites have shown exceptional semiconducting properties and microstructural versatility for inexpensive, solution‐processable photovoltaic and optoelectronic devices. In this work, an all‐solution‐based technique in ambient environment for highly sensitive and high‐speed flexible photodetectors using high crystal quality perovskite nanowires grown on Kapton substrate is presented. At 10 V, the optimized photodetector exhibits a responsivity as high as 0.62 A W?1, a maximum specific detectivity of 7.3 × 1012 cm Hz1/2 W?1, and a rise time of 227.2 µs. It also shows remarkable photocurrent stability even beyond 5000 bending cycles. Moreover, a deposition of poly(methyl methacrylate) (PMMA) as a protective layer on the perovskite yields significantly better stability under ambient air operation: the PMMA‐protected devices are stable for over 30 days. This work demonstrates a cost‐effective fabrication technique for high‐performance flexible photodetectors and opens opportunities for research advancements in broadband and large‐scale flexible perovskite‐based optoelectronic devices.  相似文献   

20.
Organic–inorganic hybrid perovskites (OIHPs) are new photoactive layer candidates for lightweight and flexible solar cells due to their low‐temperature process capability; however, the reported efficiency of flexible OIHP devices is far behind those achieved on rigid glass substrates. Here, it is revealed that the limiting factor is the different perovskite film deposition conditions required to form the same film morphology on flexible substrates. An optimized perovskite film composition needs a different precursor ratio, which is found to be essential for the formation of high‐quality perovskite films with longer radiative carrier recombination lifetime, smaller density of trap states, reduced precursor residue, and uniform and pin‐hole free films. A record efficiency of 18.1% is achieved for the flexible perovskite solar‐cell devices made on an indium tin oxide/poly(ethylene terephthalate) substrate via a low temperature (≤100 °C) solution process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号