首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
2.
Developing efficient earth‐abundant MoS2 based hydrogen evolution reaction (HER) electrocatalysts is important but challenging due to the sluggish kinetics in alkaline media. Herein, a strategy to fabricate a high‐performance MoS2 based HER electrocatalyst by modulating interface electronic structure via metal oxides is developed. All the heterostructure catalysts present significant improvement of HER electrocatalytic activities, demonstrating a positive role of metal oxides decoration in promoting the rate‐limited water dissociation step for the HER mechanism in alkaline media. The as‐obtained MoS2/Ni2O3H catalyst exhibits a low overpotential of 84 mV at 10 mA cm?2 and small charge‐transfer resistance of 1.5 Ω in 1 m KOH solution. The current density (217 mA cm?2) at the overpotential of 200 mV is about 2 and 24 times higher than that of commercial Pt/C and bare MoS2, respectively. Additionally, these MoS2/metal oxides heterostructure catalysts show outstanding long‐term stability under a harsh chronopotentiometry test. Theoretical calculations reveal the varied sensitivity of 3d‐band in different transition oxides, in which Ni‐3d of Ni2O3H is evidently activated to achieve fast electron transfer for HER as the electron‐depletion center. Both electronic properties and energetic reaction trends confirm the high electroactivity of MoS2/Ni2O3H in the adsorption and dissociation of H2O for highly efficient HER in alkaline media.  相似文献   

3.
The efficiency of splitting water into hydrogen and oxygen is highly dependent on the catalyst used. Herein, ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets, referred to as Ni/Ni(OH)2 nanosheets, with superior water splitting activity are synthesized by a partial reduction strategy. This synthetic strategy confers the heterostructured Ni/Ni(OH)2 nanosheets with abundant Ni(0)-Ni(II) active interfaces for hydrogen evolution reaction (HER) and Ni(II) defects as transitional active sites for oxygen evolution reaction (OER). The obtained Ni/Ni(OH)2 nanosheets exhibit noble metal-like electrocatalytic activities toward overall water splitting in alkaline condition, to offer 10 mA cm−2 in HER and OER, the required overpotentials are only 77 and 270 mV, respectively. Based on such an outstanding activity, a water splitting electrolysis cell using the Ni/Ni(OH)2 nanosheets as the cathode and anode electrocatalysts has been successfully built. When the output voltage of the electrolytic cell is 1.59 V, a current density of 10 mA cm−2 can be obtained. Moreover, the durability of Ni/Ni(OH)2 nanosheets in the alkaline electrolyte is much better than that of noble metals. No obvious performance decay is observed after 20 h of catalysis. This facile strategy paves the way for designing highly active non-precious-metal catalyst to generate both hydrogen and oxygen by electrolyzing water at room temperature.  相似文献   

4.
Scaling up the chemical vapor deposition (CVD) of monolayer transition metal dichalcogenides (TMDCs) is in high demand for practical applications. However, for CVD-grown TMDCs on a large scale, there are many existing factors that result in their poor uniformity. In particular, gas flow, which usually leads to inhomogeneous distributions of precursor concentrations, has yet to be well controlled. In this work, the growth of uniform monolayer MoS2 on a large scale by the delicate control of gas flows of precursors, which is realized by vertically aligning a well-designed perforated carbon nanotube (p-CNT) film face-to-face with the substrate in a horizontal tube furnace, is achieved. The p-CNT film releases gaseous Mo precursor from the solid part and allows S vapor to pass through the hollow part, resulting in uniform distributions of both gas flow rate and precursor concentrations near the substrate. Simulation results further verify that the well-designed p-CNT film guarantees a steady gas flow and a uniform spatial distribution of precursors. Consequently, the as-grown monolayer MoS2 shows quite good uniformity in geometry, density, structure, and electrical properties. This work provides a universal pathway for the synthesis of large-scale uniform monolayer TMDCs, and will advance their applications in high-performance electronic devices.  相似文献   

5.
6.
7.
Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD‐based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2. However, experimentally it requires systematic approach to form CoxW(1?x)S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary CoxW(1?x)S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm?2 and shows Tafel slope of 67 mV dec?1. Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials.  相似文献   

8.
9.
10.
An in situ coupling approach is developed to create a new highly efficient and durable cobalt‐based electrocatalyst for the oxygen evolution reaction (OER). Using a novel cyclotetramerization, a task‐specific bimetallic phthalocyanine‐based nanoporous organic framework is successfully built as a precursor for the carbonization synthesis of a nonprecious OER electrocatalyst. The resultant material exhibits an excellent OER activity with a low overpotential of 280 mV at a current density of 10 mA cm?2 and high durability in an alkaline medium. This impressive result ranks among the best from known Co‐based OER catalysts under the same conditions. The simultaneous installation of multiple diverse cobalt‐based active sites, including FeCo alloys and Co4N nanoparticles, plays a critical role in achieving this promising OER performance. This innovative approach not only enables high‐performance OER activity to be achieved but simultaneously provides a means to control the surface features, thereby tuning the catalytic property of the material.  相似文献   

11.
The exploration of highly efficient electrocatalysts for both oxygen and hydrogen generation via water splitting is receiving considerable attention in recent decades. Up till now, Pt‐based catalysts still exhibit the best hydrogen evolution reaction (HER) performance and Ir/Ru‐based oxides are identified as the benchmark for oxygen evolution reaction (OER). However, the high cost and rarity of these materials extremely hinder their large‐scale applications. This paper describes the construction of the ultrathin defect‐enriched 3D Se‐(NiCo)Sx/(OH)x nanosheets for overall water splitting through a facile Se‐induced hydrothermal treatment. Via Se‐induced fabrication, highly efficient Se‐(NiCo)Sx/(OH)x nanosheets are successfully fabricated through morphology optimization, defect engineering, and electronic structure tailoring. The as‐prepared hybrids exhibit relatively low overpotentials of 155 and 103 mV at the current density of 10 mA cm?2 for OER and HER, respectively. Moreover, an overall water‐splitting device delivers a current density of 10 mA cm?2 for ≈66 h without obvious degradation.  相似文献   

12.
13.
The exploring of economical, high-efficiency, and stable bifunctional catalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is highly imperative for the development of electrolytic water. Herein, a 3D cross-linked carbon nanotube supported oxygen vacancy (Vo)-rich N-NiMoO4/Ni heterostructure bifunctional water splitting catalyst (N-NiMoO4/Ni/CNTs) is synthesized by hydrothermal-H2 calcination method. Physical characterization confirms that Vo-rich N-NiMoO4/Ni nanoparticles with an average size of ≈19 nm are secondary aggregated on CNTs that form a hierarchical porous structure. The formation of Ni and NiMoO4 heterojunctions modify the electronic structure of N-NiMoO4/Ni/CNTs. Benefiting from these properties, N-NiMoO4/Ni/CNTs drives an impressive HER overpotential of only 46 mV and OER overpotential of 330 mV at 10 mA cm−2, which also shows exceptional cycling stability, respectively. Furthermore, the as-assembled N-NiMoO4/Ni/CNTs||N-NiMoO4/Ni/CNTs electrolyzer reaches a cell voltage of 1.64 V at 10 mA cm−2 in alkaline solution. Operando Raman analysis reveals that surface reconstruction is essential for the improved catalytic activity. Density functional theory (DFT) calculations further demonstrate that the enhanced HER/OER performance should be attributed to the synergistic effect of Vo and heteostructure that improve the conductivity of N-NiMoO4/Ni/CNTs and facilitatethe desorption of reaction intermediates.  相似文献   

14.
Highly uniform hierarchical Mo–polydopamine hollow spheres are synthesized for the first time through a liquid‐phase reaction under ambient temperature. A self‐assembly mechanism of the hollow structure of Mo–polydopamine precursor is discussed in detail, and a determined theory is proposed in a water‐in‐oil system. Via different annealing process, these precursors can be converted into hierarchical hollow MoO2/C and Mo2C/C composites without any distortion in shape. Owing to the well‐organized structure and nanosize particle embedding, the as‐prepared hollow spheres exhibit appealing performance both as the anode material for lithium‐ion batteries and as the catalyst for hydrogen evolution reaction (HER). Accordingly, MoO2/C delivers a high reversible capacity of 940 mAh g?1 at 0.1 A g?1 and 775 mAh g?1 at 1 A g?1 with good rate capability and long cycle performance. Moreover, Mo2C/C also exhibits an enhanced electrocatalytic performance with a low overpotential for HER in both acidic and alkaline conditions, as well as remarkable stability.  相似文献   

15.
A noble‐metal‐free electrocatalyst is fabricated via in situ formation of nanocomposite of nitrogen‐doped graphene quantum dots (NGQDs) and Ni3S2 nanosheets on the Ni foam (Ni3S2‐NGQDs/NF). The resultant Ni3S2‐NGQDs/NF can serve as an active, binder‐free, and self‐supported catalytic electrode for direct water splitting, which delivers a current density of 10 mA cm?2 at an overpotential of 216 mV for oxygen evolution reaction and 218 mV for hydrogen evolution reaction in alkaline media. This bifunctional electrocatalyst enables the construction of an alkali electrolyzer with a low cell voltage of 1.58 V versus reversible hydrogen electrode (RHE) at 10 mA cm?2. The experimental results and theoretical calculations demonstrate that the synergistic effects of the constructed active interfaces are the key factor for excellent performance. The nanocomposite of NGQDs and Ni3S2 nanosheets can be promising water splitting electrocatalyst for large‐scale hydrogen generation or other energy storage and conversion applications.  相似文献   

16.
Doping of bulk silicon and III–V materials has paved the foundation of the current semiconductor industry. Controlled doping of 2D semiconductors, which can also be used to tune their bandgap and type of carrier thus changing their electronic, optical, and catalytic properties, remains challenging. Here the substitutional doping of nonlike element dopant (Mn) at the Mo sites of 2D MoS2 is reported to tune its electronic and catalytic properties. The key for the successful incorporation of Mn into the MoS2 lattice stems from the development of a new growth technology called dual‐additive chemical vapor deposition. First, the addition of a MnO2 additive to the MoS2 growth process reshapes the morphology and increases lateral size of Mn‐doped MoS2. Second, a NaCl additive helps in promoting the substitutional doping and increases the concentration of Mn dopant to 1.7 at%. Because Mn has more valance electrons than Mo, its doping into MoS2 shifts the Fermi level toward the conduction band, resulting in improved electrical contact in field effect transistors. Mn doping also increases the hydrogen evolution activity of MoS2 electrocatalysts. This work provides a growth method for doping nonlike elements into 2D MoS2 and potentially many other 2D materials to modify their properties.  相似文献   

17.
18.
The metallic 1T phase of WS2 (1T‐WS2), which boosts the charge transfer between the electron source and active edge sites, can be used as an efficient electrocatalyst for the hydrogen evolution reaction (HER). As the semiconductor 2H phase of WS2 (2H‐WS2) is inherently stable, methods for synthesizing 1T‐WS2 are limited and complicated. Herein, a uniform wafer‐scale 1T‐WS2 film is prepared using a plasma‐enhanced chemical vapor deposition (PE‐CVD) system. The growth temperature is maintained at 150 °C enabling the direct synthesis of 1T‐WS2 films on both rigid dielectric and flexible polymer substrates. Both the crystallinity and number of layers of the as‐grown 1T‐WS2 are verified by various spectroscopic and microscopic analyses. A distorted 1T structure with a 2a0 × a0 superlattice is observed using scanning transmission electron microscopy. An electrochemical analysis of the 1T‐WS2 film demonstrates its similar catalytic activity and high durability as compared to those of previously reported untreated and planar 1T‐WS2 films synthesized with CVD and hydrothermal methods. The 1T‐WS2 does not transform to stable 2H‐WS2, even after a 700 h exposure to harsh catalytic conditions and 1000 cycles of HERs. This synthetic strategy can provide a facile method to synthesize uniform 1T‐phase 2D materials for electrocatalysis applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号