首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An efficient blue–green emitting phosphor, Sr4Al14O25:Eu2+, was prepared by solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Sr4Al14O25:Eu2+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 8–10 μm. Photoluminescence measurements showed a broad absorption band between 300 and 450 nm which was efficiently excited by near-ultraviolet (NUV) LEDs (350–410 nm) and a strong emission band peaking at 491 nm. A bright blue–green LED with chromatic coordination (0.176, 0.412) was fabricated by incorporating the phosphor with an InGaN-based NUV chip, which indicates that Sr4Al14O25:Eu2+ is a good candidate phosphor for application in white LEDs.  相似文献   

2.
Z.C. Wu  J.X. Shi  J. Wang  H. Wu  Q. Su  M.L. Gong   《Materials Letters》2006,60(29-30):3499-3501
SrAl2O4:Eu2+ phosphor was prepared by a solid-state reaction in CO-reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of SrAl2O4:Eu2+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 7–8 μm. Photoluminescence measurements showed that the phosphor can be efficiently excited by UV–visible light from 350 to 430 nm, and exhibited bright green emission peaked at about 516 nm. Bright green LEDs were fabricated by incorporating the phosphor with an InGaN-based UV chip. All the characteristics indicated that SrAl2O4:Eu2+ is a good candidate phosphor applied in white LEDs.  相似文献   

3.
A series of SryCa1?x?yAlSiN3:xEu2+ (x = 0–0.01, y = 0–0.8) phosphors have been successfully prepared by solid state reaction under atmospheric pressure. All the phosphors exhibit orthorhombic crystal structure similar with CaAlSiN3 structure. It is found that the emission bands for all Ca1?xAlSiN3:xEu2+ phosphors are centered at ~650 nm and fluorescence quenching has been observed along with the increase of Eu2+ concentration in host materials. Through substitution of Ca2+ by Sr2+, an expected red emission peak (625 nm) and enhanced luminescent intensity can be achieved. The obtained Sr0.8Ca0.192AlSiN3:0.008Eu2+ phosphor was further used as efficient red component to fabricate white light emitting diodes (LEDs). Under the optimized condition of LED packaging, the white LEDs own the excellent optical properties with luminous efficiency of 90.6 lm/W and an ideal color rendering index (Ra = 82). Furthermore, the color correlated temperature of white LEDs can be simply adjusted through changing the red phosphor concentration and dispensing package saves time.  相似文献   

4.
Bluish green emitting phosphor, Ca3Al2O6:Ce3+, is prepared by low-temperature combustion method. X-ray diffraction, photoluminescence, scanning electron microscopy techniques are used to characterize the synthesized phosphor. The most efficient bluish green (483 nm) emission is observed under the excitation by near UV light. The emission characteristics are credited to 5d → 4f type transitions in Ce3+. The luminescence properties of Eu2+ are predicted for the first time from those of Ce3+. Also, photoluminescence of Eu3+ is studied in the same host. The emission spectrum of Ca3Al2O6:Eu3+ shows the peak at 592 (orange) and 614 nm (red) wavelengths. Ca3Al2O6:Ce3+phosphor can be a potential blue phosphor for field emission display, solid-state lighting and LED.  相似文献   

5.
The luminous efficiency of inorganic white light‐emitting diodes, to be used by the next generation as light initiators, is continuously progressing and is an emerging interest for researchers. However, low color‐rendering index (Ra), high correlated color temperature (CCT), and poor stability limit its wider application. Herein, it is reported that Sm3+‐ and Eu3+‐doped calcium scandate (CaSc2O4 (CSO)) are an emerging deep‐red‐emitting material with promising light absorption, enhanced emission properties, and excellent thermal stability that make it a promising candidate with potential applications in emission display, solid‐state white lighting, and the device performance of perovskite solar cells (PSCs). The average crystal structures of Sm3+‐doped CSO are studied by synchrotron X‐ray data that correspond to an extremely rigid host structure. Samarium ion is incorporated as a sensitizer that enhances the emission intensity up to 30%, with a high color purity of 88.9% with a 6% increment. The impacts of hosting the sensitizer are studied by quantifying the lifetime curves. The CaSc2O4:0.15Eu3+,0.03Sm3+ phosphor offers significant resistance to thermal quenching. The incorporation of lanthanide ion‐doped phosphors CSOE into PSCs is investigated along with their potential applications. The CSOE‐coated PSCs devices exhibit a high current density and a high power conversion efficiency (15.96%) when compared to the uncoated control devices.  相似文献   

6.
A series of single-phased CaAl2Si2O8: Eu, Tb phosphors have been synthesized at 1400 °C via a solid state reaction. The emission bands of Eu2+ and Eu3+ were observed in the air-sintered CaAl2Si2O8: Eu phosphor due to the self-reduction effect. Tb3+ ions that typically generated green emission were added in CaAl2Si2O8: Eu phosphor for contributing for a wider-range tunable emission. Energy transfer from Eu2+ to Tb3+ and the modulation of valence distribution of Eu2+/Eu3+ that contributes to the tunable color emitting were elucidated. More importantly, a white emission can be obtained by controlling the codoped contents of Li+ as well as suppressing the self-reduction degree of Eu. The white light emitting with the color coordinate (0.326, 0.261) was obtained, which indicates that CaAl2Si2O8: Eu, Tb is a promising tunable color phosphor for application in ultraviolet light emitting diodes (UV-LEDs).  相似文献   

7.
A novel blue-emitting phosphor based on a phosphate host matrix, NaSrPO4:Eu2+, was prepared by a conventional solid-state reaction method. The NaSrPO4:Eu2+ phosphor was efficiently excited at wavelengths of 250-450 nm, which is suitable for the emission band of near ultraviolet (n-UV) light-emitting-diode (LED) chips (350-430 nm). The NaSrPO4:Eu2+ phosphor exhibits a strong blue emission peaking at 453 nm and broadly weak green and red emission bands up to 700 nm. The effect of the activated Eu2+ concentration on the emission intensity of the NaSrPO4:Eu2+ was also investigated. Here, a phosphor-converted LED (pc-LED) was fabricated and exhibits bright blue emission under a forward bias of 20 mA. All of these characteristics suggest that the NaSrPO4:Eu2+ phosphors could be applicable to n-UV based white LEDs.  相似文献   

8.
Divalent europium activated alkaline earth orthosilicate M2SiO4 (M = Ba, Sr, Ca) phosphors were synthesized through solid-state reaction technique and their luminescent properties were investigated. Photoluminescence emission spectra of Sr2SiO4:Eu2+ phosphor was tuned by substitution of Sr2+ with 10 mol% Ca2+ or Mg2+. Two emission bands originated from the 4f–5d transition of Eu2+ ion doped into different cation sites in the M2SiO4 host lattice were observed under ultraviolet excitation. The Sr2SiO4:Eu2+ phosphor showed a blue and a green broad emission bands peaked around 475 and 555 nm with some variation for different Eu2+ doping concentration. When 10 mol% of Sr2+ was substituted by Ca2+ or Mg2+, the blue emission band blue-shifted to 460 nm and the green emission band shifted to even longer wavelength. An energy loss due to energy transfer from one Eu2+ to another Eu2+ ion, changing of the crystal field strength and covalence in the host lattice together were assigned for the tuning effect. With an overview of the excitation spectra and the emission spectra in blue and green-yellow color, these co-doped phosphors can become a promising phosphor candidate for white light-emitting-diodes (LEDs) pumped by ultraviolet chip.  相似文献   

9.
A novel green emitting phosphor, Eu2+-activated Ca6Sr4(Si2O7)3Cl2, was synthesized using the solid-state reaction and its temperature-dependent luminescence characteristic was reported for the first time. Crystallographic site-occupations of Eu2+ ions in this host were assigned and two distinguishable Sr2+ sites were confirmed. As the temperature increases, the emission lines of Ca6Sr3.99(Si2O7)3Cl2:0.01Eu2+ show an anomalous blue-shift along with the broadening bandwidth and decreasing emission intensity, which is ascribed in terms of the phonon-assisted back tunneling from the excited state of low-energy emission band to the high-energy emission band in the configuration coordinate diagram. Further, the luminescence quenching temperature, the activation energy for thermal quenching (ΔE), and the chromaticity coordinates were also investigated. In view of its preferable excitation spectrum profile, intense green emission peaking at 511 nm, and high thermal luminescence stability, the as-prepared phosphor is expected to find applications as a new green emitting phosphor for near-UV light emitting diodes.  相似文献   

10.
A novel blue-emitting phosphor NaBa0.98Eu0.02PO4 was synthesized by conventional solid state reaction, and it exhibits efficient blue emission under near-ultraviolet (n-UV) excitation. The emission spectrum shows a single band centered at about 440 nm, which corresponds to the 4f65d1-4f7 transition of Eu2+. The excitation spectrum is a broad band in the wavelength range between 200 and 450 nm, which can match the emission of white light emitting diodes (LEDs) by the method of n-UV conversion. The Ca2+, Sr2+ and Mg2+ were co-doped into NaBa0.98Eu0.02PO4 respectively. Special attention was paid to the sample co-doped with Ca2+ that could possess a higher luminous efficacy than the analogs co-doped with Sr2+ and Mg2+. With the co-doping of Ca2+, the enhanced intensity of the excitation and emission band appears. The optimum co-doping concentration of Ca2+ is 7 mol.%. The emission intensity of NaBa0.91Ca0.07Eu0.02PO4 phosphoris about 1.68 times than that of NaBa0.98Eu0.02PO4 phosphor. The as-prepared phosphors are the potential blue phosphors for application in white LEDs.  相似文献   

11.
Li2CaSiO4:Eu2+ phosphors with single phase were successfully synthesized by the solid state reaction method and their photoluminescence properties were studied. The experimental results on Li2CaSiO4:Eu2+, summarized in effective absorption and excitation in the ultra-violet region, strong emission in the blue spectrum and the CIE Chromaticity coordinate (0.10, 0.20), indicate this phosphor has great potential in ultra-violet chip pumped white LEDs. A comparative investigation of the emission intensity suggests that Li2CaSiO4:Eu2+ has the best performance with Eu2+ concentration of 1% and excitation of 375 nm. Compound phosphors of Li2CaSiO4:Eu2+ and Li2SrSiO4:Eu2+ show two emission bands in the blue and yellow region. With the molar ratio of Li2CaSiO4:Eu2+ to Li2SrSiO4:Eu2+ being 1:1 and excitation of 390 nm, the CIE Chromaticity coordinate was tuned to be (0.32, 0.36), which is close to that of natural white light, indicating this may become blue phosphor candidate for ultra-violet chip pumped and multi-phosphors converted white LEDs.  相似文献   

12.
Green-emitting phosphor Ca8Zn(SiO4)4Cl2:Eu2+ has been prepared by the solid state reaction method and there luminescence properties are investigated. The excitation spectrum of Ca8Zn(SiO4)4Cl2:Eu2+ shows an intense excitation band in the blue centered at 450 nm and emits with a maximum at 505 nm. The concentration quenching mechanism is studied and verified to be the energy transfer among the nearest-neighbor ions. Upon 450 nm excitation, the emission intensity of Ca8Zn(SiO4)4Cl2:Eu2+ is much stronger than the green emitting Ca3SO4Cl2:Eu2+ phosphor and even higher than YAG:Ce3+. This excitation spectrum range matches UV and blue light-emitting diodes (LEDS) chips very well, suggesting Ca8Zn(SiO4)4Cl2:Eu2+ could be a promising green emitting phosphor candidate for LED devices.  相似文献   

13.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6? layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.  相似文献   

14.
A green-emitting phosphor of Eu2+-activated Sr5(PO4)2(SiO4) was synthesized by the conventional solid-state reaction. It was characterized by photoluminescence excitation and emission spectra, and lifetimes. In Sr5(PO4)2(SiO4):Eu2+, there are at least two distinguishable Eu2+ sites, which result in one broad emission situating at about 495 nm and 560 nm. The phosphor can be efficiently excited in the wavelength range of 250–440 nm where the near UV (~ 395 nm) Ga(In)N LED is well matched. The dependence of luminescence intensities on temperature was investigated. With the increasing of temperature, the luminescence of the phosphor shows good thermal stability and stable color chromaticity. The luminescence characteristics indicate that this phosphor has a potential application as a white light emitting diode phosphor.  相似文献   

15.
Eu3+ doped BaY2(1?x)ZnO5 phosphor was successfully synthesized by a single step solution combustion process. The crystal structure and particle morphology were investigated by X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy. The XRD results suggest that BaY2ZnO5 crystallizes in a single phased orthorhombic structure with space group Pbnm at 1,100 °C. The phosphor can be effectively excited by near-UV light, emitting intense red luminescence (628 nm) corresponding to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, located at low-symmetry site with no inversion center in BaY2ZnO5 crystal lattice. Fluorescence decay analysis was carried out to understand the energy transfer mechanism and quenching behavior of luminescence of Eu3+ ions in the BaY2ZnO5 phosphor. The BaY2ZnO5: Eu3+ emission (λex = 395 nm) could be tuned from blue to white and red light by varying the Eu3+ ions concentration, making this phosphor as a promising candidate for LEDs application.  相似文献   

16.
New green-emitting KBa1−xScSi3O9:Eu2+x phosphors for white LEDs were synthesized by a conventional solid-state reaction method. The obtained KBa1−xScSi3O9:Eu2+x phosphors show the strong broad optical absorption band from UV to blue light region and exhibit broad green emission with a peak at 521 nm under excitation at 405 nm due to the allowed 4f65d1−4f7 transition of Eu2+. Optimization of Eu2+ concentration resulted in the highest green emission peak intensity was obtained at the composition of KBa0.94ScSi3O9:Eu2+0.06, and the relative emission intensity of this phosphor was 32% of that of a commercial YAG:Ce3+ phosphor.  相似文献   

17.
A series of luminescent emission-tunable phosphors Ca8NaGd(PO4)6F2: Eu2+, Mn2+ have been prepared by a combustion-assisted synthesis method. The X-ray diffraction measurement results indicate that the crystal structure of the phosphor is a single phase of Ca8NaGd(PO4)6F2. The photoluminescence (PL) properties of Eu2+ and Mn2+-codoped Ca8NaGd(PO4)6F2 phosphors were also investigated. The phosphors can be efficiently excited by ultraviolet (UV) light and show a blue emission band at about 450 nm and a yellow emission band at about 574 nm, which originated from the Eu2+ ions and the Mn2+ ions, respectively. The efficient energy transfer from the Eu2+ ions to the Mn2+ ions was observed and its mechanism should be a resonant type via a nonradiative dipole–quadrupole interaction. A color-tunable emission in Ca8NaGd(PO4)6F2 phosphors can be realized by Eu2+  Mn2+ energy transfer. Our results indicate that the developed phosphor may be used as a potential white emitting phosphor for UV based white LEDs.  相似文献   

18.
A novel blue-emitting phosphor NaBa0.98Eu0.02PO4 was synthesized by conventional solid state reaction, and it exhibits efficient blue emission under near-ultraviolet (n-UV) excitation. The emission spectrum shows a single band centered at about 440 nm, which corresponds to the 4f65d1-4f7 transition of Eu2+. The excitation spectrum is a broad band in the wavelength range between 200 and 450 nm, which can match the emission of white light emitting diodes (LEDs) by the method of n-UV conversion. The Ca2+, Sr2+ and Mg2+ were co-doped into NaBa0.98Eu0.02PO4 respectively. Special attention was paid to the sample co-doped with Ca2+ that could possess a higher luminous efficacy than the analogs co-doped with Sr2+ and Mg2+. With the co-doping of Ca2+, the enhanced intensity of the excitation and emission band appears. The optimum co-doping concentration of Ca2+ is 7 mol.%. The emission intensity of NaBa0.91Ca0.07Eu0.02PO4 phosphoris about 1.68 times than that of NaBa0.98Eu0.02PO4 phosphor. The as-prepared phosphors are the potential blue phosphors for application in white LEDs.  相似文献   

19.
A series of Eu2+ doped KCaPO4 phosphors were prepared by high temperature solid state reaction and an efficient blue-green emission was observed. The photoluminescence (PL) spectrum of the phosphor appeared one asymmetric peak under near-ultraviolet (n-UV) excitation and two emission bands at 480 nm and 540 nm were obtained using Gaussian fit, which was because Eu2+ ions inhabited two different Ca2+ sites: Eu(I) and Eu(II) in the host lattice, respectively. The excitation spectrum was a broadband extending from 250 to 450 nm, which matched well with the emission of ultraviolet light-emitting diodes (UV LEDs). The effect of Eu2+ concentration on the emission intensity of KCaPO4:Eu2+ phosphor was investigated in detail.  相似文献   

20.
The Ca2BO3Cl:Eu2+ phosphor was synthesized by the general high temperature solid-state reaction and an efficient yellow emission under near-ultraviolet and blue excitation was observed. The emission spectrum shows a single intense broad emission band centered at 573 nm, which corresponds to the allowed f-d transition of Eu2+. The excitation spectrum is very broad extending from 350 to 500 nm, which is coupled well with the emission of UV LED (350-410 nm) and blue LED (450-470 nm). The measured emission of In-GaN-based Ca2BO3Cl:Eu2+ LED shows white light to the naked eye with a chromatic coordinate of (0.33, 0.36). The Ca2BO3Cl:Eu2+ is a very appropriate yellow-emitting phosphor for white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号