首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fast deposition of aligning ambipolar polymers for high‐performance organic field‐effect transistors (OFETs) and inverter circuits are highly desired for both scientific studies and industry applications. Here, large‐area and ordered polymer films are prepared by a bar‐coating method at a rate of 120 mm s?1 in air. Atomic force microscopy and grazing‐incidence wide‐angle X‐ray scattering analysis indicate uniform edge‐on poly(fluoroisoindigo‐difluorobithiophene‐fluoroisoindigo‐bithiophene) (PFIBI‐BT) in 11.7 ± 1 nm film (≈5 layers). The elongated, uniformly oriented grains can reduce the adverse effects of the grain boundaries and facilitate charge transport in polymers. Furthermore, OFETs based on parallel film show high hole/electron mobilities up to 5.5/4.5 cm2 V?1 s?1, which are approximately nine times of the devices prepared by spin‐coating. The gain of the inverter is as high as 174, which is one of the highest values in polymer inventers currently. These results demonstrate that the excellent bipolar performance of few‐layer PFIBI‐BT can be ensured while achieving the compatibility of the experimental process with industrial preparation.  相似文献   

2.
Ambipolar organic field‐effect transistors (OFETs) are vital for the construction of high‐performance all‐organic digital circuits. The bilayer p–n junction structure, which is composed of separate layers of p‐ and n‐type organic semiconductors, is considered a promising way to realize well‐balanced ambipolar charge transport. However, this approach suffers from severely reduced mobility due to the rough interface between the polycrystalline thin films of p‐ and n‐type organic semiconductors. Herein, 2D molecular crystal (2DMC) bilayer p–n junctions are proposed to construct high‐performance and well‐balanced ambipolar OFETs. The molecular‐scale thickness of the 2DMC ensures high injection efficiency and the atomically flat surface of the 2DMC leads to high‐quality p‐ and n‐layer interfaces. Moreover, by controlling the layer numbers of the p‐ and n‐type 2DMCs, the electron and hole mobilities are tuned and well‐balanced ambipolar transport is accomplished. The hole and electron mobilities reach up to 0.87 and 0.82 cm2 V?1 s?1, respectively, which are the highest values among organic single‐crystalline double‐channel OFETs measured in ambient air. This work provides a general route to construct high‐performance and well‐balanced ambipolar OFETs based on available unipolar materials.  相似文献   

3.
Here, room‐temperature solution‐processed inorganic p‐type copper iodide (CuI) thin‐film transistors (TFTs) are reported for the first time. The spin‐coated 5 nm thick CuI film has average hole mobility (µFE) of 0.44 cm2 V?1 s?1 and on/off current ratio of 5 × 102. Furthermore, µFE increases to 1.93 cm2 V?1 s?1 and operating voltage significantly reduces from 60 to 5 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2. Transparent complementary inverters composed of p‐type CuI and n‐type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4. These outcomes provide effective approaches for solution‐processed inorganic p‐type semiconductor inks and related electronics.  相似文献   

4.
Over the past 25 years, organic field‐effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field‐effect transistors with performance that clearly exceeds that of benchmark amorphous silicon‐based devices. In this article, state‐of‐the‐art in OFETs are reviewed in light of requirements for demanding future applications, in particular active‐matrix addressing for flexible organic light‐emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field‐effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future.  相似文献   

5.
Noncovalent conformational locks are broadly employed to construct highly planar π‐conjugated semiconductors exhibiting substantial charge transport characteristics. However, current chalcogen‐based conformational lock strategies for organic semiconductors are limited to S···X (X = O, N, halide) weak interactions. An easily accessible (minimal synthetic steps) and structurally planar selenophene‐based building block, 1,2‐diethoxy‐1,2‐bisselenylvinylene ( DESVS ), with novel Se···O noncovalent conformational locks is designed and synthesized. DESVS unique properties are supported by density functional theory computed electronic structures, single crystal structures, and experimental lattice cohesion metrics. Based on this building block, a new class of stable, structurally planar, and solution‐processable conjugated polymers are synthesized and implemented in organic thin‐film transistors (TFT) and organic photovoltaic (OPV) cells. DESVS ‐based polymers exhibit carrier mobilities in air as high as 1.49 cm2 V?1 s?1 (p‐type) and 0.65 cm2 V?1 s?1 (n‐type) in TFTs, and power conversion efficiency >5% in OPV cells.  相似文献   

6.
Despite extensive research, large‐scale realization of metal‐oxide electronics is still impeded by high‐temperature fabrication, incompatible with flexible substrates. Ideally, an athermal treatment modifying the electronic structure of amorphous metal oxide semiconductors (AMOS) to generate sufficient carrier concentration would help mitigate such high‐temperature requirements, enabling realization of high‐performance electronics on flexible substrates. Here, a novel field‐driven athermal activation of AMOS channels is demonstrated via an electrolyte‐gating approach. Facilitating migration of charged oxygen species across the semiconductor–dielectric interface, this approach modulates the local electronic structure of the channel, generating sufficient carriers for charge transport and activating oxygen‐compensated thin films. The thin‐film transistors (TFTs) investigated here depict an enhancement of linear mobility from 51 to 105.25 cm2 V?1 s?1 (ionic‐gated) and from 8.09 to 14.49 cm2 V?1 s?1 (back‐gated), by creating additional oxygen vacancies. The accompanying stochiometric transformations, monitored via spectroscopic measurements (X‐ray photoelectron spectroscopy) corroborate the detailed electrical (TFT, current evolution) parameter analyses, providing critical insights into the underlying oxygen‐vacancy generation mechanism and clearly demonstrating field‐induced activation as a promising alternative to conventional high‐temperature annealing strategies. Facilitating on‐demand active programing of the operation modes of transistors (enhancement vs depletion), this technique paves way for facile fabrication of logic circuits and neuromorphic transistors for bioinspired computing.  相似文献   

7.
A high‐performance top‐gated graphene field‐effect transistor (FET) with excellent mechanical flexibility is demonstrated by implementing a surface‐energy‐engineered copolymer gate dielectric via a solvent‐free process called initiated chemical vapor deposition. The ultrathin, flexible copolymer dielectric is synthesized from two monomers composed of 1,3,5‐trimethyl‐1,3,5‐trivinyl cyclotrisiloxane and 1‐vinylimidazole (VIDZ). The copolymer dielectric enables the graphene device to exhibit excellent dielectric performance and substantially enhanced mechanical flexibility. The p‐doping level of the graphene can be tuned by varying the polar VIDZ fraction in the copolymer dielectric, and the Dirac voltage (VDirac) of the graphene FET can thus be systematically controlled. In particular, the VDirac approaches neutrality with higher VIDZ concentrations in the copolymer dielectric, which minimizes the carrier scattering and thereby improves the charge transport of the graphene device. As a result, the graphene FET with 20 nm thick copolymer dielectrics exhibits field‐effect hole and electron mobility values of over 7200 and 3800 cm2 V?1 s?1, respectively, at room temperature. These electrical characteristics remain unchanged even at the 1 mm bending radius, corresponding to a tensile strain of 1.28%. The formed gate stack with the copolymer gate dielectric is further investigated for high‐frequency flexible device applications.  相似文献   

8.
Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF‐TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low‐cost and easy‐fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half‐selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm2 V?1 s?1 (average) for 2,6‐diphenylanthracene (DPA) and electron mobility of 0.124 cm2 V?1 s?1 (average) for N ,N ′‐1H,1H‐perfluorobutyl dicyanoperylenecarboxydiimide (PDI‐FCN2) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric‐based pixelated memory module fabrication.  相似文献   

9.
Single‐walled carbon nanotubes (SWCNTs) are a class of 1D nanomaterials that exhibit extraordinary electrical and optical properties. However, many of their fundamental studies and practical applications are stymied by sample polydispersity. SWCNTs are synthesized in bulk with broad structural (chirality) and geometrical (length and diameter) distributions; problematically, all known post‐synthetic sorting methods rely on ultrasonication, which cuts SWCNTs into short segments (typically <1 µm). It is demonstrated that ultralong (>10 µm) SWCNTs can be efficiently separated from shorter ones through a solution‐phase “self‐sorting”. It is shown that thin‐film transistors fabricated from long semiconducting SWCNTs exhibit a carrier mobility as high as ≈90 cm2 V?1 s?1, which is ≈10 times higher than those which use shorter counterparts and well exceeds other known materials such as organic semiconducting polymers (<1 cm2 V?1 s?1), amorphous silicon (≈1 cm2 V?1 s?1), and nanocrystalline silicon (≈50 cm2 V?1 s?1). Mechanistic studies suggest that this self‐sorting is driven by the length‐dependent solution phase behavior of rigid rods. This length sorting technique shows a path to attain long‐sought ultralong, electronically pure carbon nanotube materials through scalable solution processing.  相似文献   

10.
High‐performance solution‐processed metal oxide (MO) thin‐film transistors (TFTs) are realized by fabricating a homojunction of indium oxide (In2O3) and polyethylenimine (PEI)‐doped In2O3 (In2O3:x% PEI, x = 0.5–4.0 wt%) as the channel layer. A two‐dimensional electron gas (2DEG) is thereby achieved by creating a band offset between the In2O3 and PEI‐In2O3 via work function tuning of the In2O3:x% PEI, from 4.00 to 3.62 eV as the PEI content is increased from 0.0 (pristine In2O3) to 4.0 wt%, respectively. The resulting devices achieve electron mobilities greater than 10 cm2 V?1 s?1 on a 300 nm SiO2 gate dielectric. Importantly, these metrics exceed those of the devices composed of the pristine In2O3 materials, which achieve a maximum mobility of ≈4 cm2 V?1 s?1. Furthermore, a mobility as high as 30 cm2 V?1 s?1 is achieved on a high‐k ZrO2 dielectric in the homojunction devices. This is the first demonstration of 2DEG‐based homojunction oxide TFTs via band offset achieved by simple polymer doping of the same MO material.  相似文献   

11.
Ambipolar organic field‐effect transistors (OFETs) combining single‐crystalline p‐ and n‐type organic micro/nanocrystals have demonstrated superior performance to their amorphous or polycrystalline thin‐film counterparts. However, large‐area alignment and precise patterning of organic micro/nanocrystals for ambipolar OFETs remain challenges. Here, a surface‐energy‐controlled stepwise crystallization (SECSC) method is reported for large‐scale, aligned, and precise patterning of single‐crystalline laterally stacked p–n heterojunction microbelt (MB) arrays. In this method, the p‐ and n‐type organic crystals are precipitated via a stepwise process: first, the lateral sides of prepatterned photoresist stripes provide high‐surface‐energy sites to guide the aligned growth of p‐type organic crystals. Next, the formed p‐type crystals serve as new high‐surface‐energy positions to induce the crystallization of n‐type organic molecules at their sides, thus leading to the formation of laterally stacked p–n microbelts. Ambipolar OFETs based on the p–n heterojunction MB arrays exhibit balanced hole and electron mobilities of 0.32 and 0.43 cm2 V?1 s?1, respectively, enabling the fabrication of complementary‐like inverters with large voltage gains. This work paves the way toward rational design and construction of single‐crystalline organic p–n heterojunction arrays for high‐performance organic, integrated circuits.  相似文献   

12.
Recent studies of the bias‐stress‐driven electrical instability of organic field‐effect transistors (OFETs) are reviewed. OFETs are operated under continuous gate and source/drain biases and these bias stresses degrade device performance. The principles underlying this bias instability are discussed, particularly the mechanisms of charge trapping. There are three main charge‐trapping sites: the semiconductor, the dielectric, and the semiconductor‐dielectric interface. The charge‐trapping phenomena in these three regions are analyzed with special attention to the microstructural dependence of bias instability. Finally, possibilities for future research in this field are presented. This critical review aims to enhance our insight into bias‐stress‐induced charge trapping in OFETs with the aim of minimizing operational instability.  相似文献   

13.
Molecularly engineered novel dopant‐free hole‐transporting materials for perovskite solar cells (PSCs) combined with mixed‐perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NH=CHNH3+) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated. The mobilities of FA‐CN, and TPA‐CN are determined to be 1.2 × 10?4 cm2 V?1 s?1 and 1.1 × 10?4 cm2 V?1 s?1, respectively. Exceptional stability up to 500 h is measured with the PSC based on FA‐CN. Additionally, it is found that the maximum power output collected after 1300 h remained 65% of its initial value. This opens up new avenue for efficient and stable PSCs exploring new materials as alternatives to Spiro‐OMeTAD.  相似文献   

14.
Colloidal quantum dots (CQDs) are nanoscale building blocks for bottom‐up fabrication of semiconducting solids with tailorable properties beyond the possibilities of bulk materials. Achieving ordered, macroscopic crystal‐like assemblies has been in the focus of researchers for years, since it would allow exploitation of the quantum‐confinement‐based electronic properties with tunable dimensionality. Lead‐chalcogenide CQDs show especially strong tendencies to self‐organize into 2D superlattices with micrometer‐scale order, making the array fabrication fairly simple. However, most studies concentrate on the fundamentals of the assembly process, and none have investigated the electronic properties and their dependence on the nanoscale structure induced by different ligands. Here, it is discussed how different chemical treatments on the initial superlattices affect the nanostructure, the optical, and the electronic‐transport properties. Transistors with average two‐terminal electron mobilities of 13 cm2 V?1 s?1 and contactless mobility of 24 cm2 V?1 s?1 are obtained for small‐area superlattice field‐effect transistors. Such mobility values are the highest reported for CQD devices wherein the quantum confinement is substantially present and are comparable to those reported for heavy sintering. The considerable mobility with the simultaneous preservation of the optical bandgap displays the vast potential of colloidal QD superlattices for optoelectronic applications.  相似文献   

15.
Conjugated polymers, which can be fabricated by simple processing techniques and possess excellent electrical performance, are key to the fabrication of flexible polymer field‐effect transistors (PFETs) and integrated circuits. Herein, two ambipolar conjugated polymers based on (3E,7E)‐3,7‐bis(2‐oxo‐1H‐pyrrolo[2,3‐b]pyridin‐3(2H)‐ylidene)benzo[1,2‐b:4,5‐b′]difuran‐2,6(3H,7H)‐dione and dithienylbenzothiadiazole units, namely PNBDOPV‐DTBT and PNBDOPV‐DTF2BT , are developed. Both copolymers possess almost planar conjugated backbone conformations and suitable highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels (?5.64/?4.38 eV for PNBDOPV‐DTBT and ?5.79/?4.48 eV for PNBDOPV‐DTF2BT ). Note that PNBDOPV‐DTBT has a glass transition temperature (140 °C) lower than the deformation temperature of polyethylene terephthalate (PET), meaning well‐ordered molecular packing can be obtained on PET substrate before its deformation in mild thermal annealing process. Flexible PFETs based on PNBDOPV‐DTBT fabricated on PET substrates exhibit high and well‐balanced hole/electron mobilities of 4.68/4.72 cm2 V?1 s?1 under ambient conditions. After the further modification of Au source/drain electrodes with 1‐octanethiol self‐assembled monolayers, impressively high and well‐balanced hole/electron mobilities up to 5.97/7.07 cm2 V?1 s?1 are achieved in the flexible PFETs. Meanwhile, flexible complementary‐like inverters based on PNBDOPV‐DTBT on PET substrate also afford a much high gain of 148. The device performances of both the PFETs and inverters are among the highest values for ambipolar conjugated polymers reported to date.  相似文献   

16.
So far, most of the reported high‐mobility conjugated polymers are p‐type semiconductors. By contrast, the advances in high‐mobility ambipolar polymers fall greatly behind those of p‐type counterparts. Instead of unipolar p‐type and n‐type materials, ambipolar polymers, especially balanced ambipolar polymers, are potentially serviceable for easy‐fabrication and low‐cost complementary metal‐oxide‐semiconductor circuits. Therefore, it is a critical issue to develop high‐mobility ambipolar polymers. Here, three isoindigo‐based polymers, PIID‐2FBT , P1FIID‐2FBT , and P2FIID‐2FBT are developed for high‐performance ambipolar organic field‐effect transistors. After the incorporation of fluorine atoms, the polymers exhibit enhanced coplanarity, lower energy levels, higher crystallinity, and thus increased µ e. P2FIID‐2FBT exhibits n‐type dominant performance with a µ e of 9.70 cm2 V?1 s?1. Moreover, P1FIID‐2FBT exhibits a highly balanced µ h and µ e of 6.41 and 6.76 cm2 V?1 s?1, respectively, which are among the highest values for balanced ambipolar polymers. Moreover, a concept “effective mass” is introduced to further study the reasons for the high performance of the polymers. All the polymers have small effective masses, indicating good intramolecular charge transport. The results demonstrate that high‐mobility ambipolar semiconductors can be obtained by designing polymers with fine‐tuned energy levels, small effective masses, and high crystallinity.  相似文献   

17.
Graphene, a star 2D material, has attracted much attention because of its unique properties including linear electronic dispersion, massless carriers, and ultrahigh carrier mobility (104–105 cm2 V?1 s?1). However, its zero bandgap greatly impedes its application in the semiconductor industry. Opening the zero bandgap has become an unresolved worldwide problem. Here, a novel and stable 2D Ruddlesden–Popper‐type layered chalcogenide perovskite semiconductor Ca3Sn2S7 is found based on first‐principles GW calculations, which exhibits excellent electronic, optical, and transport properties, as well as soft and isotropic mechanical characteristics. Surprisingly, it has a graphene‐like linear electronic dispersion, small carrier effective mass (0.04 m0), ultrahigh room‐temperature carrier mobility (6.7 × 104 cm2 V?1 s?1), Fermi velocity (3 × 105 m s?1), and optical absorption coefficient (105 cm?1). Particularly, it has a direct quasi‐particle bandgap of 0.5 eV, which realizes the dream of opening the graphene bandgap in a new way. These results guarantee its application in infrared optoelectronic and high‐speed electronic devices.  相似文献   

18.
Currently 2D crystals are being studied intensively for use in future nanoelectronics, as conventional semiconductor devices face challenges in high power consumption and short channel effects when scaled to the quantum limit. Toward this end, achieving barrier‐free contact to 2D semiconductors has emerged as a major roadblock. In conventional contacts to bulk metals, the 2D semiconductor Fermi levels become pinned inside the bandgap, deviating from the ideal Schottky–Mott rule and resulting in significant suppression of carrier transport in the device. Here, MoS2 polarity control is realized without extrinsic doping by employing a 1D elemental metal contact scheme. The use of high‐work‐function palladium (Pd) or gold (Au) enables a high‐quality p‐type dominant contact to intrinsic MoS2, realizing Fermi level depinning. Field‐effect transistors (FETs) with Pd edge contact and Au edge contact show high performance with the highest hole mobility reaching 330 and 432 cm2 V?1 s?1 at 300 K, respectively. The ideal Fermi level alignment allows creation of p‐ and n‐type FETs on the same intrinsic MoS2 flake using Pd and low‐work‐function molybdenum (Mo) contacts, respectively. This device acts as an efficient inverter, a basic building block for semiconductor integrated circuits, with gain reaching 15 at VD = 5 V.  相似文献   

19.
Organic dyes and pigments constitute a large class of industrial products. The utilization of these compounds in the field of organic electronics is reviewed with particular emphasis on organic field‐effect transistors. It is shown that for most major classes of industrial dyes and pigments, i.e., phthalocyanines, perylene and naphthalene diimides, diketopyrrolopyrroles, indigos and isoindigos, squaraines, and merocyanines, charge‐carrier mobilities exceeding 1 cm2 V?1 s?1 have been achieved. The most widely investigated molecules due to their n‐channel operation are perylene and naphthalene diimides, for which even values close to 10 cm2 V?1 s?1 have been demonstrated. The fact that all of these π‐conjugated colorants contain polar substituents leading to strongly quadrupolar or even dipolar molecules suggests that indeed a much larger structural space shows promise for the design of organic semiconductor molecules than was considered in this field traditionally. In particular, because many of these dye and pigment chromophores demonstrate excellent thermal and (photo‐)chemical stability in their original applications in dyeing and printing, and are accessible by straightforward synthetic protocols, they bear a particularly high potential for commercial applications in the area of organic electronics.  相似文献   

20.
New 3,3′‐dithioalkyl‐2,2′‐bithiophene ( SBT )‐based small molecular and polymeric semiconductors are synthesized by end‐capping or copolymerization with dithienothiophen‐2‐yl units. Single‐crystal, molecular orbital computations, and optical/electrochemical data indicate that the SBT core is completely planar, likely via S(alkyl)?S(thiophene) intramolecular locks. Therefore, compared to semiconductors based on the conventional 3,3′‐dialkyl‐2,2′‐bithiophene, the resulting SBT systems are planar (torsional angle <1°) and highly π‐conjugated. Charge transport is investigated for solution‐sheared films in field‐effect transistors demonstrating that SBT can enable good semiconducting materials with hole mobilities ranging from ≈0.03 to 1.7 cm2 V?1 s?1. Transport difference within this family is rationalized by film morphology, as accessed by grazing incidence X‐ray diffraction experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号