首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
To meet the demand of developing compatible and energy‐efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field‐effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti‐ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti‐ferromagnetic (AFM) ordering is enhanced or converted into an AFM–ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG‐induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage.  相似文献   

2.
Antiferromagnetic spin dynamics is important for both fundamental and applied antiferromagnetic spintronic devices; however, it is rarely explored by external fields because of the strong exchange interaction in antiferromagnetic materials. Here, the photoinduced excitation of ultrafast antiferromagnetic spin dynamics is achieved by capping antiferromagnetic RFeO3 (R = Er or Dy) with an exchange‐coupled ferromagnetic Fe film. Compared with antiferromagnetic spin dynamics of bare RFeO3 orthoferrite single crystals, which can be triggered effectively by ultrafast laser heating just below the phase transition temperature, the ultrafast photoinduced multimode antiferromagnetic spin dynamic modes, for exchange‐coupled Fe/RFeO3 heterostructures, including quasiferromagnetic resonance, impurity, coherent phonon, and quasiantiferromagnetic modes, are observed in a temperature range of 10–300 K. These experimental results not only offer an effective means to trigger ultrafast antiferromagnetic spin dynamics of rare‐earth orthoferrites, but also shed light on the ultrafast manipulation of antiferromagnetic magnetization in Fe/RFeO3 heterostructures.  相似文献   

3.
Interface enhanced magnetism attracts much attention due to its potential use in exploring novel structure devices. Nevertheless, the magnetic behavior at interfaces has not been quantitatively determined. In this study, abnormal magnetic moment reduction is observed in La0.7Sr0.3MnO3 (LSMO)/BiFeO3 (BFO) superlattices, which is induced by ferromagnetic (FM)/antiferromagnetic (AFM) coupling in the interface. With reduced repetition of the superlattice's unit cell [(LSMO)n /(BFO)n ]60/n (n = 1, 2, 5, 10) on a SrTiO3 substrate, magnetic moment reduction from 25.5 emu cc?1 ([(LSMO)10/(BFO)10]6) to 1.5 emu cc?1 ([(LSMO)1/(BFO)1]60) is obtained. Ab initio simulations show that due to the different magnetic domain formation energies, the magnetic moment orientation tends to be paramagnetic in the FM/AFM interface. The work focuses on the magnetic domain formation energy and provides a pathway to construct artificial heterostructures that can be an effective way to tune the magnetic moment orientation and control the magnetization of ultrathin films.  相似文献   

4.
Electric field (E‐field) modulation of perpendicular magnetic anisotropy (PMA) switching, in an energy‐efficient manner, is of great potential to realize magnetoelectric (ME) memories and other ME devices. Voltage control of the spin‐reorientation transition (SRT) that allows the magnetic moment rotating between the out‐of‐plane and the in‐plane direction is thereby crucial. In this work, a remarkable magnetic anisotropy field change up to 1572 Oe is achieved under a small operation voltage of 4 V through ionic liquid (IL) gating control of SRT in Au/[DEME]+[TFSI]?/Pt/(Co/Pt)2/Ta capacitor heterostructures at room temperature, corresponding to a large ME coefficient of 378 Oe V?1. As revealed by both ferromagnetic resonance measurements and magnetic domain evolution observation, the magnetization can be switched stably and reversibly between the out‐of‐plane and in‐plane directions via IL gating. The key mechanism, revealed by the first‐principles calculation, is that the IL gating process influences the interfacial spin–orbital coupling as well as net Rashba magnetic field between the Co and Pt layers, resulting in the modulation of the SRT and in‐plane/out‐of‐plane magnetization switching. This work demonstrates a unique IL‐gated PMA with large ME tunability and paves a way toward IL gating spintronic/electronic devices such as voltage tunable PMA memories.  相似文献   

5.
The ever‐growing technological demand for more advanced microelectronic and spintronic devices keeps catalyzing the idea of controlling magnetism with an electric field. Although voltage‐driven on/off switching of magnetization is already established in some magnetoelectric (ME) systems, often the coupling between magnetic and electric order parameters lacks an adequate reversibility, energy efficiency, working temperature, or switching speed. Here, the ME performance of a manganite supercapacitor composed of a ferromagnetic, spin‐polarized ultrathin film of La0.74Sr0.26MnO3 (LSMO) electrically charged with an ionic liquid electrolyte is investigated. Fully reversible, rapid, on/off switching of ferromagnetism in LSMO is demonstrated in combination with a shift in Curie temperature of up to 26 K and a giant ME coupling coefficient of ≈226 Oe V−1. The application of voltages of only ≈2 V results in ultralow energy consumptions of about 90 µJ cm−2. This work provides a step forward toward low‐power, high‐endurance electrical switching of magnetism for the development of high‐performance ME spintronics.  相似文献   

6.
Electric field control of magnetism ultimately opens up the possibility of reducing energy consumption of memory and logic devices. Electric control of magnetization and exchange bias are demonstrated in all‐oxide heterostructures of BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). However, the role of the polar heterointerface on magnetoelectric (ME) coupling is not fully explored. Here, the ME coupling in BFO/LSMO heterostructures with two types of interfaces, achieved by exploiting the interface engineering at the atomic scale, is investigated. It is shown that both magnetization and exchange bias are reversibly controlled by switching the ferroelectric polarization of BFO. Intriguingly, distinctly different modulation behaviors that depend on the interfacial atomic sequence are observed. These results provide new insights into the underlying physics of ME coupling in the model system. This study highlights that designing interface at the atomic scale is of general importance for functional spintronic devices.  相似文献   

7.
Traditional current-driven spintronics is limited by localized heating issues and large energy consumption, restricting their data storage density and operation speed. Meanwhile, voltage-driven spintronics with much lower energy dissipation also suffers from charge-induced interfacial corrosion. Thereby finding a novel way of tuning ferromagnetism is crucial for spintronics with energy-saving and good reliability. Here, a visible light tuning of interfacial exchange interaction via photoelectron doping into synthetic antiferromagnetic heterostructure of CoFeB/Cu/CoFeB/PN Si substrate is demonstrated. Then, a complete, reversible magnetism switching between antiferromagnetic (AFM) and ferromagnetic (FM) states with visible light on and off is realized. Moreover, a visible light control of 180° deterministic magnetization switching with a tiny magnetic bias field is achieved. The magnetic optical Kerr effect results further reveal the magnetic domain switching pathway between AFM and FM domains. The first-principle calculations conclude that the photoelectrons fill in the unoccupied band and raise the Fermi energy, which increases the exchange interaction. Lastly, a prototype device with visible light control of two states switching with a 0.35% giant magnetoresistance ratio change (maximal 0.4%), paving the way toward fast, compact, and energy-efficient solar-driven memories is fabricated.  相似文献   

8.
Combining the advantage of metal, metal sulfide, and carbon, mesoporous hollow core–shell Sb/ZnS@C hybrid heterostructures composed of Sb/ZnS inner core and carbon outer shell are rationally designed based on a robust template of ZnS nanosphere, as anodes for high‐performance sodium‐ion batteries (SIBs). A partial cation exchange reaction based on the solubility difference between Sb2S3 and ZnS can transform mesoporous ZnS to Sb2S3/ZnS heterostructure. To get a stable structure, a thin contiguous resorcinol‐formaldehyde (RF) layer is introduced on the surface of Sb2S3/ZnS heterostructure. The effectively protective carbon layer from RF can be designed as the reducing agent to convert Sb2S3 to metallic Sb to obtain core–shell Sb/ZnS@C hybrid heterostructures. Simultaneously, the carbon outer shell is beneficial to the charge transfer kinetics, and can maintain the structure stability during the repeated sodiation/desodiation process. Owing to its unique stable architecture and synergistic effects between the components, the core–shell porous Sb/ZnS@C hybrid heterostructure SIB anode shows a high reversible capacity, good rate capability, and excellent cycling stability by turning the optimized voltage range. This novel strategy to prepare carbon‐layer‐protected metal/metal sulfide core–shell heterostructure can be further extended to design other novel nanostructured systems for high‐performance energy storage devices.  相似文献   

9.
The performance of magnetoresistive devices (spin valves, tunnel junctions), made of two ferromagnetic (FM) layers and separated by a non-magnetic spacer, rely on the existence of two well separated resistance states. For this to occur, one of the FM layer is deposited just adjacent to an antiferromagnetic (AFM) layer. Due to the exchange interaction at the AFM/FM interface, the reversal of the magnetization (M) of such FM-pinned layer occurs at a high applied magnetic field. The magnetization of the other FM layer reverses almost freely when a small magnetic field is applied. Here we study the exchange bias effect in the MnPt (t)/CoFe (50 Å) system, using the Magneto-Optical Kerr Effect (MOKE) and domain imaging techniques. The exchange (HE) and coercive (Hc) fields increase with increasing AFM thickness, saturating for t > 200 Å (HE ≈ 670 Oe and Hc ≈ 315 Oe). Furthermore, we observe that the value of the exchange field is almost independent of the applied magnetic field sweeping rate (up to ≈ 300 kOe/s). Domain imaging allowed us to conclude that magnetization reversal in the studied system proceeds essentially by coherent magnetic moment rotation.  相似文献   

10.
Design and synthesis of ordered, metal‐free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed‐dimensional (2D/3D) metal‐free van der Waals (vdW) heterostructures based on triazine (C3N3) linkers grow as large area, transparent yellow‐orange membranes on copper surfaces from solution. The membranes have an indirect band gap (E g,opt = 1.91 eV, E g,elec = 1.84 eV) and are moderately porous (124 m2 g?1). The material consists of a crystalline 2D phase that is fully sp2 hybridized and provides structural stability, and an amorphous, porous phase with mixed sp2–sp hybridization. Interestingly, this 2D/3D vdW heterostructure grows in a twinned mechanism from a one‐pot reaction mixture: unprecedented for metal‐free frameworks and a direct consequence of on‐catalyst synthesis. Thanks to the efficient type I heterojunction, electron transfer processes are fundamentally improved and hence, the material is capable of metal‐free, light‐induced hydrogen evolution from water without the need for a noble metal cocatalyst (34 µmol h?1 g?1 without Pt). The results highlight that twinned growth mechanisms are observed in the realm of “wet” chemistry, and that they can be used to fabricate otherwise challenging 2D/3D vdW heterostructures with composite properties.  相似文献   

11.
The fundamental light–matter interactions in monolayer transition metal dichalcogenides might be significantly engineered by hybridization with their organic counterparts, enabling intriguing optoelectronic applications. Here, atomically thin organic–inorganic (O–I) heterostructures, comprising monolayer MoSe2 and mono‐/few‐layer single‐crystal pentacene samples, are fabricated. These heterostructures show type‐I band alignments, allowing efficient and layer‐dependent exciton pumping across the O–I interfaces. The interfacial exciton pumping has much higher efficiency (>86 times) than the photoexcitation process in MoSe2, although the pentacene layer has much lower optical absorption than MoSe2. This highly enhanced pumping efficiency is attributed to the high quantum yield in pentacene and the ultrafast energy transfer between the O–I interface. Furthermore, those organic counterparts significantly modulate the bindings of charged excitons in monolayer MoSe2 via their precise dielectric environment engineering. The results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using atomically thin O–I heterostructures.  相似文献   

12.
The inside cover shows a scanning electron micrograph of a novel hierarchical heterostructures, as reported by Hu and co‐workers on p. 971. The heterostructures are formed from Si core microwires covered by dense, aligned SiO2 nanowires, thus forming multiple junctions to the cores. The inset shows a schematic of the Sn‐catalyzed vapor–liquid–solid growth mechanism. These materials are envisaged to become important for optical fibers, low‐dimensional waveguides, scanning near‐field optical microscopes and high‐bandwidth optical signal processing devices.  相似文献   

13.
采用变分法研究了外应力场下铁磁单层膜、铁磁/反铁磁双层膜系统的磁化性质,进而研究了由铁磁单层膜和铁磁/反铁磁双层膜所构建的自旋阀结构中的磁电阻与外应力场之间的关系.结果表明,铁磁膜中的磁化性质与膜面内所加应力场的大小,方向密切相关,而反铁磁层的嵌入将明显地改变着铁磁层的磁矩向应力场方向磁化的行为.特别地,在应力场方向垂直于铁磁易轴情况下,当应力场日H_λ=2(K_1+K_(up)/3M)时,将发生磁化从易轴方向到应力方向的突变.为此,可采用自旋阀结构,通过其膜面内的应力场所调控的磁电阻效应,构建纳米尺度下的力磁传感器.  相似文献   

14.
Enhanced electron field emission (EFE) behavior of a core–shell heterostructure, where ZnO nanorods (ZNRs) form the core and ultrananocrystalline diamond needles (UNCDNs) form the shell, is reported. EFE properties of ZNR‐UNCDN core–shell heterostructures show a high emission current density of 5.5 mA cm?2 at an applied field of 4.25 V μm?1, and a low turn‐on field of 2.08 V μm?1 compared to the 1.67 mA cm?2 emission current density (at an applied field of 28.7 V μm?1) and 16.6 V μm?1 turn‐on field for bare ZNRs. Such an enhancement in the field emission originates from the unique materials combination, resulting in good electron transport from ZNRs to UNCDNs and efficient field emission of electrons from the UNCDNs. The potential application of these materials is demonstrated by the plasma illumination measurements that lowering the threshold voltage by 160 V confirms the role of ZNR‐UNCDN core–shell heterostructures in the enhancement of electron emission.  相似文献   

15.
We studied the magnetoimpedance (MI) effect of FeCoB(100 nm)/Cu(100 nm)/FeCoB(100 nm) sandwiched films with different thickness of Permalloy as underlayer for the FeCoB ferromagnetic layer. The maximum MI ratio of sandwiched film is 9.2% when the thickness of the Permalloy underlayer is 2-3 nm. The improvement of MI ratio of sandwiched films with Permalloy underlayer was explained by exchange induced ripple reduction mechanism.  相似文献   

16.
Van der Waals (vdW) heterostructures have received intense attention for their efficient stacking methodology with 2D nanomaterials in vertical dimension. However, it is still a challenge to scale down the lateral size of vdW heterostructures to the nanometer and make proper contacts to achieve optimized performances. Here, a carbon‐nanotube‐confined vertical heterostructure (CCVH) is employed to address this challenge, in which 2D semiconductors are asymmetrically sandwiched by an individual metallic single‐walled carbon nanotube (SWCNT) and a metal electrode. By using WSe2 and MoS2, the CCVH can be made into p‐type and n‐type field effect transistors with high on/off ratios even when the channel length is 3.3 nm. A complementary inverter was further built with them, indicating their potential in logic circuits with a high integration level. Furthermore, the Fermi level of SWCNTs can be efficiently modulated by the gate voltage, making it competent for both electron and hole injection in the CCVHs. This unique property is shown by the transition of WSe2 CCVH from unipolar to bipolar, and the transition of WSe2/MoS2 from p–n junction to n–n junction under proper source–drain biases and gate voltages. Therefore, the CCVH, as a member of 1D/2D mixed heterostructures, shows great potentials in future nanoelectronics and nano‐optoelectronics.  相似文献   

17.
In-plane magnetic anisotropy and crystal structure of FeCoB layer on Si/NiFe/Ru underlayer were investigated by using X-Ray Diffraction (XRD) measurement. A pole-figure measurement of XRD showed directionally tilted alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayered film with high in-plane anisotropy field H(k) but no directional alignment was found in FeCoB single layered film. The higher H(k) appeared in the Si/NiFe/Ru/FeCoB multilayered configuration with the thicker FeCoB layer. Since Ru crystallites in a multiunderlayer configuration exhibited no directional alignment, the surface structure of underlayer should be no main reason for the directional alignment of FeCo crystallites deposited on it. The dependence of hickness of FeCoB layer in Si/NiFe/Ru/FeCoB film on H(k) indicated that the in-plane magnetic anisotropy is caused by not only the structure of Ru underlayer but also oblique incidence effect of sputtered particles, which is attained in configuration of Facing Targets Sputtering (FTS) system. From these experimental results, remarkably high H(k) of 540 Oe was obtained.  相似文献   

18.
Detailed magnetic and nonlinear susceptibility measurements of the La1–x Zn x MnO3 system are reported. For x = 0.05 and 0.1, a typical ferromagnetic (FM) signal in the field-cooled curve is observed at 38 K. However, for the insulating antiferromagnetic (AFM) parent compound LaMnO3 and for the x = 0.2 and 0.33 samples, the magnetization curves in the low temperature range, are smooth and flat. This observation confirms the coexistence of finite FM clusters in the insulating AFM region below the critical concentration (x c = 0.16) for percolation, predicted by the percolation model.  相似文献   

19.
Precise control of the selective growth of heterostructures with specific composition and functionalities is an emerging and extremely challenging topic. Here, the first investigation of the difference in binding energy between a series of metal–semiconductor heterostructures based on layered V2–VI3 nanostructures is investigated by means of density functional theory. All lateral configurations show lower formation energy compared with that of the vertical ones, implying the selective growth of metal nanoparticles. The simulation results are supported by the successful fabrication of self‐assembled Ag/Cu‐nanoparticle‐decorated p‐type Sb2Te3 and n‐type Bi2Te3 nanoplates at their lateral sites through a solution reaction. The detailed nucleation–growth kinetics are well studied with controllable reaction times and precursor concentrations. Accompanied by the preserved topological structure integrity and electron transfer on the semiconductor host, exceptional properties such as dramatically increased electrical conductivity are observed thanks to the pre‐energy‐filtering effect before carrier injection. A zigzag thermoelectric generator is built using Cu/Ag‐decorated Sb2Te3 and Bi2Te3 as p–n legs to utilize the temperature gradient in the vertical direction. Synthetic approaches using similar chalcogenide nanoplates as building blocks, as well as careful control of the dopant metallic nanoparticles or semiconductors, are believed to be broadly applicable to other heterostructures with novel applications.  相似文献   

20.
Piezophotonic light‐emitting devices have great potential for future microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) due to the added functionality provided by the electromechanical transduction coupled with the ability of light emission. Piezophotonic light‐emitting source based on Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) bulk is severely restricted by many challenges, such as high voltage burden, low integration density, and micromanufacturing complexity. Developing chip‐integrated devices or incorporating such photonic components onto a Si platform is highly sought after in this field. In this work, the authors overcome the abovementioned problems by introducing single‐crystal PMN–PT thin films on Si as central active elements. Taking advantage of mature microfabrication techniques, arrays of PMN–PT actuators with small footprints and low operation voltages have been implemented. Each actuator can be individually addressed, generating local deformation to trigger piezophotonic luminescence from ZnS:Mn thin films. Moreover, the authors have realized continuous and reversible color manipulation of piezophotonic luminescence on a bilayer film of ZnS:Cu,Al/ZnS:Mn. The color tunability promises an extra degree of freedom and distinctly suggests its great potential in developing a more compact and colorful piezophotonic light sources and displays related applications together with the “single pixel” addressability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号