共查询到18条相似文献,搜索用时 121 毫秒
1.
2.
在人脸维度里,对称性是一个重要特征.以往许多研究人员利用PCA把相关数据从高维降到低维来实现人脸识别、提升识别效率.该文在PCA(主成分分析法)的框架下探讨了面部的对称性.研究通过平均两半脸来操纵面部的对称,认为良好估计的对称脸位于一个低维的子空间.受此启发,在研究中提出一种类似于PCA的模型,即镜像PCA,分析和提取... 相似文献
3.
4.
人脸的特征提取是人脸识别的关键技术,采用主元分析法进行特征提取是经典的方法之一,利用M at-lab进行人脸的特征提取能显著地提高计算效率。论述了利用主元分析和奇异值分解进行人脸特征提取的方法,并详细阐述其在M atlab中的实现过程,包括读取图像文件、计算均值脸、求特征值和特征向量,计算人脸特征参数。实现过程均给出了M atlab代码。实践证明利用M atlab进行主元分析提取特征是一种有效的方法。 相似文献
5.
6.
7.
人脸检测中基于自适应ICA的特征提取算法 总被引:1,自引:0,他引:1
如何从图片中提取出有效特征来区分人脸与非人脸一直是一个难题.文中提出了利用自适应独立成分分析(Self-Adaptive ICA)算法对图像结构信息非常敏感的特点,有效地从大量正面人脸图片中分离出人脸的局部特征,从而利用这些局部特征基底有效地表示人脸图片.自适应ICA算法的优点是能自适应的拟合图像数据的统计性质,而不用预先设定.通过比较待检测的人脸图片与非人脸图片在这组特征基底上的投影系数,可以较好的区分二者.实验结果也表明这种特征提取方法可以找到一组很好的人脸特征基底.使用这种方法构造的弱分类器的分类准确率在相同的误检率下比Boosted Cascaded方法中的弱分类器高1% ~ 1.5%. 相似文献
8.
9.
10.
人脸自动识别方法综述 总被引:14,自引:1,他引:14
简要回顾了人脸自动识别技术的研究背景及发展历程;重点对近年来人脸自动识别方法的研究进展进行综述,并对各种方法加以评价;总结了现在存在的研究困难并提出了解决方法及今后的发展方向。 相似文献
11.
基于眼睛特征的人脸检测方法* 总被引:5,自引:0,他引:5
由于眼球的灰度级较低,而眼球周围白色区域的灰度级较高,因此在其交界处灰度级产生强烈突变。利用这一特征先从图像中找出可能的眼睛对,定位可能的人脸区域,通过计算其对称性来确定各种人脸特征的存在,更进一步验证可能的人脸区域。实验证明,此方法能迅速准确地从复杂背景图像中检测出人脸,而且对多人脸图像同样有效。 相似文献
12.
人脸特征提取是人脸识别中最重要的一个环节,人脸特征提取的一种主要方法是寻找一系列的基图像,然后再把人脸表示为这一系列基图像的线性叠加。PCA和ICA在寻找基图像的过程中,源图像和基图像的数目都是相同的。本文提出了一种基于Overcomplete ICA的人脸特征提取方法,所得到的基图像数目要多于源图像数目。最后采用最小距离分离器进行人脸识别的实验,并与PCA和ICA的识别效果进行比较。 相似文献
13.
本文运用主成份分析法对铸造零件表面缺陷数字图像进行特征提取,提出了简化零件表面质量自动检测计算量的新方法,具体地阐述了主成份分析法的原理、计算方法、数字图像分割、特征提取,并通过实例分析进行优化参数选取,具有实际应用价值。 相似文献
14.
提出了一种基于主分量分析(PCA)和支持向量机(SVM)相结合的人脸检测方法。该方法首先利用计算复杂度较低的PCA粗分类器对输入图像遍历检测,滤除大部分非人脸窗口,再由SVM分类器进行精确判断,从而加快了检测过程。实验证明。本方法能够有效的检测出复杂背景下的人脸图像,并且处理时间比单纯使用SVM大大缩短。 相似文献
15.
在运用Adaboost算法检测出人眼区域前提下.再根据人眼部特征的知识结构来排除掉非人眼区域,而提出一种由人眼在人脸中的位置特性计算出人脸位置的检测方法。 相似文献
16.
17.
主分量分析(Principal Component Analysis,PCA)是模式识别领域中一种重要的特征抽取方法,该方法通过K-L展开式来抽取样本的主要特征。基于此,提出一种拓展的PCA人脸识别方法,即分块排序PCA人脸识别方法(MSPCA)。分块排序PCA方法先对图像矩阵进行分块,对所有分块得到的子图像矩阵利用PCA方法求出矩阵的所有特征值所对应的特征向量并加以标识;然后找出这些所有的特征值中k个最大的特征值所对应的特征向量,用这些特征向量分别去抽取所属的子图像的特征;最后,在MSPCA的基础上,将抽取子图像所得到的特征矩阵合并,把这个合并后的特征矩阵作为新的样本进行PCA+LDA。与PCA和PCA+LDA方法相比,分块排序PCA由于使用子图像矩阵,可以避免使用奇异值分解理论,从而更加简便。在ORL人脸库上的实验结果表明,所提出的方法在识别性能上明显优于经典的PCA和PCA+LDA方法。 相似文献