首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low temperature solution synthesis and characterization of ZnO nano-flowers   总被引:1,自引:0,他引:1  
Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 °C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300-350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm−1. Raman scattering exhibits a sharp and strong E2 mode at 437 cm−1 which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p3/2) and 1044.3 eV (Zn 2p1/2), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.  相似文献   

2.
This article presents, the fabrication of perfectly hexagonal zinc oxide nanorods performed via solution process using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMT) at various concentrations of i.e. 1 × 10−3 to 10 × 10−2 M in 50 mL distilled water and refluxed at 100 °C for 1 h. We used HMT because it acts as a template for the nucleation and growth of zinc oxide nanorods, and it also works as a surfactant for the zinc oxide structures. The X-ray diffraction patterns clearly reveal that the grown product is pure zinc oxide. The diameters and lengths of the synthesized nanorods lie in the range of 200–800 nm and 2–4 μm, respectively as observed from the field emission scanning electron microscopy (FESEM). The morphological observation was also confirmed by the transmission electron microscopy (TEM) and clearly consistent with the FESEM observations. The chemical composition was analyzed by the FTIR spectroscopy, and it shows the ZnO band at 405 cm−1. On the basis of these observations, the growth mechanism of ZnO nanostructures was also proposed.  相似文献   

3.
Two types of one-dimensional ZnO nanostructures have been synthesized on silicon substrate by the thermal evaporation of metallic zinc powder in the presence of oxygen without the use of any catalyst or additives. Detailed structural analysis revealed that the formed ZnO nanostructures are single crystalline with wurtzite hexagonal phase and grow along the [0001] direction in preference. Presence of a sharp and strong, optical phonon Raman-active E2 (high) mode and suppressed E1 (LO) mode in the Raman spectra, in both the cases, confirmed the good crystallinity with the wurtzite hexagonal phase for the as-grown products. A sharp and dominant near band edge emission with a suppressed green emission is observed from the as-synthesized nanostructures which affirmed the good optical properties with very less structural defects for the grown nanostructures.  相似文献   

4.
Ahmad Umar 《Materials Letters》2007,61(27):4954-4958
Well-crystallized with excellent optical properties, needle-shaped ZnO nanowires have been synthesized on silicon substrate in a high density via the thermal evaporation of metallic zinc powder without the use of catalysts or additives. Extensive structural analysis showed that the grown nanowires are highly crystalline with the wurtzite hexagonal phase, grown along the [0001] in the c-axis direction. The presence of an optical-phonon E2 mode in Raman spectrum at 437 cm− 1 and sharp and strong UV emission at 379 nm with no green emission in the room-temperature photoluminescence (PL) spectrum confirms good crystallinity with the excellent optical properties for the deposited nanowires.  相似文献   

5.
Novel microphone-like ZnO microstructures were grown at a very high density via a simple thermal evaporation process using commercially available ZnO powder in ambient air at ∼ 1050 ± 20 °C in 1 h. The unique as-grown microstructures were characterized in detail in terms of their structural and optical properties. The structural properties of the synthesized products confirmed that they were wurtzite hexagonal phase for the as-grown products. Raman-scattering spectra exhibited a strong and dominated Raman-active E2 (high) mode at 441 cm− 1, confirming the wurtzite hexagonal phase for the as-grown microphone-like ZnO morphologies. The cathodoluminescence (CL) spectrum shows a suppressed near band edge emission at ∼ 380 nm and strong green emission at ∼ 500 nm.  相似文献   

6.
The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol–gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 °C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60–80 nm in size is really an aggregate of many small crystallites of around 10–20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10−5–10−6 (Ω cm)−1. The optical study showed that the spectra for all samples give the transparency in the visible range.  相似文献   

7.
In this paper, Ni-doped ZnO (Zn1−x Ni x O, in which 0 ≤ x ≤ 0.05) diluted magnetic semiconductors nanoparticles are prepared by an ultrasonic assisted sol–gel process. Transmission electron microscopy shows sphere-like nanoparticles with an average size of about 25 nm. From the analysis of X-ray diffraction, the Ni-doped ZnO nanoparticles are identified to be a wurtzite structure, but impurity phases are observed when the Ni content x reaches 0.05. Sample structures are further studied by Raman spectra, from which a broad and strong Raman band in the range of 500–600 cm−1 is observed in Zn1−x Ni x O. With the increment of x, wurtzite structures degrade gradually. The magnetic properties are measured using superconducting quantum interference device at room temperature; the Zn1−x Ni x O (x ≤ 0.02) nanoparticles show ferromagnetism. However, for the sample of Zn0.95Ni0.05O, paramagnetism is observed, which may be ascribed to ferromagnetic–antiferromagnetic competition.  相似文献   

8.
Well-crystalline flower-shaped ZnO nanostructures were synthesized by simple hydrothermal process at low-temperature of 145 °C and utilized as a photocatalyst and photo-anode material for photocatalytic degradation and dye-sensitized solar cell applications, respectively. The detailed morphological and the structural characterizations revealed that the synthesized products were flower-shaped, grown in very high-density, and possessed well-crystalline wurtzite hexagonal phase. The chemical composition confirmed the pure phase and good optical properties of as-synthesized ZnO flowers. The as-synthesized ZnO flowers were used as an efficient photocatalyst for the photocatalytic degradation of Rhodamine B which exhibit ~84% degradation within 140 min. Moreover, the as-synthesized ZnO flowers were utilized as photo-anode material for the fabrication of dye-sensitized solar cells (DSSCs) which exhibited overall light-to-electricity conversion efficiency of ~1.38%, open-circuit current (VOC) of 0.621 V, short-circuit current (JSC) of ~3.52 mA/cm2 and fill factor (FF) of 0.64.  相似文献   

9.
Zn0.86Cd0.11In0.03O alloy semiconductor film was deposited on quartz substrate by pulsed laser deposition technique. Cd is used to change the optical band gap and In is used to increase the carrier concentration of the ZnO film. XRD studies confirm that the structure of Zn0.86Cd0.11In0.03O is hexagonal wurtzite structure without CdO phase appeared. FE-SEM shows that the grain size of Zn0.86Cd0.11In0.03O film is smaller than that of ZnO. These films are highly transparent (∼85%) in visible region. Most importantly, the electrical properties of Zn0.86Cd0.11In0.03O film highly improved with In doped. It has low resistivity (4.42×10−3 Ω cm) and high carrier concentration (5.50×1019 cm−3) that enable this film a promising candidate for window layer in solar cells and other possible optoelectronic applications.  相似文献   

10.
Nanocrystalline Zn1−x Ni x O (x = 0.00, 0.02, 0.04, 0.06, 0.08) powders were synthesized by a simple sol–gel autocombustion method using metal nitrates of zinc, nickel and glycine. Structural and optical properties of the Ni-doped ZnO samples annealed at 800 °C are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis using X-rays (EDAX), UV–visible spectroscopy and photoluminescence (PL). X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a hexagonal wurtzite structure and secondary phase (NiO) was observed with the sensitivity of XRD measurement with the increasing nickel concentration (x ≥ 0.04). The lattice constants of Ni-doped ZnO nanoparticles increase slightly when Ni2+ is doped into ZnO lattice. The optical absorption band edge of the nickel doped samples was observed above 387 nm (3.20 eV) along with well-defined absorbance peaks at around 439 (2.82 eV), 615(2.01 eV) and 655 nm (1.89 eV). PL measurements of Ni-doped samples illustrated the strong UV emission band at ~3.02 eV, weak blue emission bands at 2.82 and 2.75 eV, and a strong green emission band at 2.26 eV. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.  相似文献   

11.
Transparent, conducting, aluminum-doped zinc oxide (AZO) thin films were deposited on Corning 1737 glass by a DC magnetron sputter. The structural, electrical, and optical properties of the films, deposited using various substrate temperatures, were investigated. The AZO thin films were fabricated with an AZO ceramic target (Al2O3:2 wt%). The obtained films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The lowest resistivity was 6.0 × 10−4Ω cm, with a carrier concentration of 2.7 × 1020 cm−3 and a Hall mobility of 20.4 cm2/Vs. The average transmittance in the visible range was above 90%.  相似文献   

12.
Zinc oxide ultra-fine crystalline powders and polycrystalline films of high optical quality were synthesized under soft hydrothermal conditions. The phase composition, crystal morphology, and luminescent properties of submicron ZnO powders and films were studied depending on synthesis conditions (system composition, precursor kind, solvent type and concentration, temperature). For the systems containing metallic zinc, the ZnO growth mechanism was suggested. The most intensive UV luminescence and the highest values of IUV/IVIS were observed for polycrystalline films grown on Zn substrates. Low-threshold UV lasing at room temperature was found for ZnO-films, grown in hydrothermal systems with hydroxide or halide solutions as solvents, E th = 1–5 MW/cm2. The lowest threshold was observed on the ZnO films grown using LiOH as a solvent and zinc nitrate as ZnO-precursor. Clear mode structures with line-width 0.3 nm are characteristic of the lasing spectra.  相似文献   

13.
X.X. Yang  B.P. Wang  C. Li  K. Hou  Y.K. Cui  Y.S. Di 《Thin solid films》2009,517(15):4385-205
Flower-like zinc oxide (ZnO) nanostructures with hexagonal crown were synthesized on a Si substrate by direct thermal evaporation of zinc power at a low temperature of 600 °C and atmospheric pressure. Field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy and photoluminescence were applied to study the structural characteristics and optical properties of the product. The result indicated that the flower-like product with many slender branches and hexagonal crowns at the ends were single-crystalline wurtzite structures and were preferentially oriented in the <001> direction. The photoluminescence spectrum demonstrated a strong UV emission band at about 386 nm and a green emission band at 516 nm. The field emission of the product showed a turn-on field of 3.0 V/µm at a current density of 0.1 μA/cm2, while the emission current density reached about 1 mA/cm2 at an applied field of 5.9 V/μm.  相似文献   

14.
In this study the origin of ferromagnetism in ZnO-based bulk systems has been investigated using Ni-doped ZnO samples, Zn1−x Ni x O with 0.25≤x≤0.50, prepared by solid-state reactions. The structural characterizations indicated that the Ni2+ ions almost uniformly distributed in all the samples, and the samples have hexagonal wurtzite structure; however, when x is increased toward 0.50, a new NiO phase is formed. A ferromagnetism (FM) has been observed for all the samples at and below the room temperature. In other words, the room temperature results of (MH) curves show that the FM observed is intrinsic for all the Ni-doped ZnO samples. However, the saturated magnetizations decrease gradually with increasing Ni concentration. This indicates that, in addition to FM, the excessive doping of Ni in ZnO also causes an antiferromagnetic (AFM) contribution which increases with increasing Ni amount. This result is also supported by the magnetization against temperature measurements. Furthermore, the trend of the ac-susceptibility (χ) versus temperature curves, measured under an ac-magnetic field of 100 Oe, also support our conclusion about the antiferromagnetic contribution to ferromagnetism in our samples.  相似文献   

15.
High resistive zinc oxide thin film (∼ 0·5 μm) was deposited on single crystalp-silicon (100) wafers by an inexpensive spray-CVD method and was characterized both optically and electrically. Al/ZnO/Si (MIS) device structure was subsequently fabricated and bothI − V andC − V characteristics were studied. The semiconductor-insulator interface charge density (D it) was calculated by Terman method and was found to be 3·85 × 1011 cm−2eV−1.  相似文献   

16.
We describe a simple route to flower like ZnO architectures, based on the decomposition of zinc acetate precursor in water-ethylene glycol solution at 140-160 °C for 1d through hydrothermal method. The PXRD pattern reveals that the ZnO crystals are of hexagonal wurtzite structure. Ethylene glycol plays a key role on the morphology control of ZnO crystals. The SEM images of ZnO products prepared at 140 °C and 160 °C mainly exhibit flower like architecture composed of many rods. Whereas, the product prepared at 180 °C shows bunches accompanying a few number of free rods. TEM results reveal that the rods resemble swords with decrease in size from one end to another. From Raman spectrum, the peaks at 437 cm− 1, 382 cm− 1 and 411 cm− 1 correspond to E2 (high), A1 (TO) and E1 (TO) of ZnO crystals respectively. The photoluminescence spectrum exhibits strong UV emission at ~ 397 nm, which comes from recombination of exciton. The possible mechanism for the formation of flower like ZnO architecture is proposed.  相似文献   

17.
We report the facile synthesis of ZnO nanocrystals via a one-step solid state reaction at room temperature and their application as the photoanode in plastic dye-sensitized solar cells (DSCs). ZnO nanoparticles were prepared utilizing zinc acetate dihydrate and sodium hydroxide with a short grinding time and without a sintering process. The as-prepared samples with the polycrystalline hexagonal wurtzite structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained ZnO nanoparticles exhibited high crystallinity even without a high temperature sintering treatment during the preparation process. The effects of compression post-treatment on the photovoltaic performance of DSCs were also investigated using intensity modulated photocurrent spectroscopy (IMPS), incident photo-to-current conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS). The results indicate that the improvement of power conversion efficiency after compression post-treatment of ZnO photoelectrode can be attributed to its high photoelectron collection efficiency and effective electron transport. Under the optimized conditions, a full plastic D149-sensitized ZnO solar cell measured under illumination of 100 mW·cm−2 (AM 1.5G) presents an energy conversion efficiency of 3.76% with open-circuit voltage of 0.688 V, short-circuit current density of 8.55 mA·cm−2, and fill factor of 0.64. These results demonstrate that the one-step solid state reaction is a convenient and effective method for the synthesis of ZnO nanocrystals for use in plastic DSCs.   相似文献   

18.
ZnO single crystals with thickness up to 12 mm, 2 inches in “diameter” and weight of about 150 g have been grown from KOH, NaOH, and K2CO3 based hydrothermal solutions on the seeds of (0001) orientation. The addition of LiOH up to 3.0–4.5 mol/L allowed to decrease the growth rate of ZnO crystals along the 〈0001〉 crystallographic direction. For positive and negative monohedra, it was achieved 0.12 and 0.01 mm/day, respectively, at temperature 340 °С and ΔТ = 10 °С. The best ZnO etching agent was found to be the solutions 25 mol% HCl + 3 mol% NH4F at room temperature, and etching time 5 min. The dislocation density of ZnO crystals varied from 240 cm−2 to 3,200 cm−2 in the case of growth rates 0.04 mm/day to 0.11 mm/day, respectively. It was also found that ZnO crystals grown are stable in air, oxygen, nitrogen, and argon atmosphere as well as in vacuum at the temperatures up to 1,000 °C under thermal treatment during 4 h.  相似文献   

19.
Cadmium sulfide–zinc oxide composite nanorods having at least 100 nm diameters were synthesized by a two-step chemical deposition technique. Polycrystalline nanorods of ZnO were grown on indium tin oxide coated quartz substrate by aqueous chemical growth technique. Cadmium sulfide was deposited on the surface of the ZnO nanorod thin film by chemical bath deposition. The X-ray diffraction results revealed the co-existence of polycrystalline CdS and ZnO, both having hexagonal structures. Neither any phase mixing nor any surface diffusion induced alloying was observed. Micro-Raman study detected a pair of optical phonons at 301 cm−1 and 438 cm−1 corresponding to hexagonal CdS and ZnO, respectively. An enhanced light to electricity conversion efficiency of 2.52% was recorded from CdS–ZnO photoanode based electrochemical solar cell under 0.5 sun illumination condition (50 mW cm−2). We observed a significant enhancement of short circuit current of the electrochemical solar cells due to addition of ionic salt solution to the electrolyte.  相似文献   

20.
D N Bose  Arvind Kumar 《Sadhana》1992,17(3-4):385-389
High purity layers of In1 −x Ga x As have been grown by liquid phase epitaxy using a novel impurity gettering technique with rare earth atoms. The electron concentration could thus be decreased from 3 × 1018 cm−3 to 2·4 × 1015 cm−3 and the mobility increased from 7 110 cm2/Vs to 18,981 cm2/Vs (100 K). The excellent quality of the layers has been evidenced by X-ray diffraction and photoluminescence measurements. The fabrication ofp-i-n photodiodes using this technique is described and reliability aspects addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号