首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
Severe hyperparathyroidism is a challenge on hemodialysis. The definition of dialysate calcium (Ca) is a pending issue with renewed importance in cases of individualized dialysis schedules and of portable home dialysis machines with low‐flow dialysate. Direct measurement of calcium mass transfer is complex and is imprecisely reflected by differences in start‐to‐end of dialysis Ca levels. The study was performed in a dialysis unit dedicated to home hemodialysis and to critical patients with wide use of daily and tailored schedules. The Ca‐phosphate (P)‐parathyroid hormone (PTH) profile includes creatinine, urea, total and ionized Ca, albumin, sodium, potassium, P, PTH levels at start, mid, and end of dialysis. “Severe” secondary hyperparathyroidism was defined as PTH > 300 pg/mL for ≥3 months. Four schedules were tested: conventional dialysis (polysulfone dialyzer 1.8–2.1 m2), with dialysate Ca 1.5 or 1.75 mmol/L, NxStage (Ca 1.5 mmol/L), and NxStage plus intradialytic Ca infusion. Dosages of vitamin D, calcium, phosphate binders, and Ca mimetic agents were adjusted monthly. Eighty Ca‐P‐PTH profiles were collected in 12 patients. Serum phosphate was efficiently reduced by all techniques. No differences in start‐to‐end PTH and Ca levels on dialysis were observed in patients with PTH levels < 300 pg/mL. Conversely, Ca levels in “severe” secondary hyperparathyroid patients significantly increased and PTH decreased during dialysis on all schedules except on Nxstage (P < 0.05). Our data support the need for tailored dialysate Ca content, even on “low‐flow” daily home dialysis, in “severe” secondary hyperparathyroid patients in order to increase the therapeutic potentials of the new dialysis techniques.  相似文献   

2.
3.
Objective: To evaluate and describe biochemical indices of bone metabolism in 4 children on NHD. Method: The children, aged 12, 13, 14, and 16 yrs, have been treated exclusively on NHD for 6, 9, 9, and 15 mos. Subsequently, Pt 1 converted to a hybrid program of 4 nights on home nocturnal plus 1 session of in center conventional HD per week. Biochemical indices of bone metabolism have been collected prospectively. Results: All baseline pre‐dialysis calcium levels were within normal ranges and each patient was started on a dialysis calcium concentration of 3.0 mEq/L. However, over time the number of asymptomatic biochemical hypocalcaemic episodes increased. The dialysate calcium concentration was increased to 3.5 mEq/L in one and decreased to 2.0 mEq/L in another who was hypercalcemic and receiving concurrent calcitonin for bone pain related to osteoporosis. In Pt 1, the dialysate calcium was increased to 3.5 mEq/L during nocturnal and continued on hybrid therapy. Including an evaluation of dietary intake, all 4 patients had a net positive calcium balance, ranging between 9.8 to 23.5 mmol (393–942 mg). A significant reduction in the predialysis phosphate level was observed in all 4 patients, and none required dietary restrictions or the use of phosphate binders within 2 months or vitamin D within 6 months of HND. In addition, phosphate was added to provide a dialysate concentration of 2.4–6.1 mEq/L to prevent hypophosphatemia. This is reflected by significant reductions in intact PTH levels to the desired range (twice the normal range) in all 4, but the level continued to drop to the normal range and below in 2. In Pt 1, after introduction of hybrid therapy, both levels of phosphate and PTH rose, necessitating recommencement of phosphate binders and vitamin D. Likewise, the (Ca × PO4) dropped and remained <55 in all 4 patients exclusively on NHD, but started to climb in Pt 1 during hybrid therapy. Conclusion: In our cohort of patients, NHD rapidly lowered plasma phosphate and PTH levels. With NHD, additional dialysate phosphate and possibly calcium may be necessary to prevent chronic losses and development of renal osteodystrophy, and caution is required to prevent either oversuppression of PTH and extraskeletal calcification.  相似文献   

4.
Hyperphosphatemia is common among patients receiving dialysis and is associated with increased mortality. Nocturnal hemodialysis (NHD) is a long, slow dialytic modality that may improve hyperphosphatemia and disorders of mineral metabolism. We performed a randomized‐controlled trial of NHD compared with conventional hemodialysis (CvHD); in this paper, we report detailed results of mineral metabolism outcomes. Prevalent patients were randomized to receive NHD 5 to 6 nights per week for 6to 10 hours per night or to continue CvHD thrice weekly for 6 months. Oral phosphate binders and vitamin D analogs were adjusted to maintain phosphate, calcium and parathyroid hormone (PTH) levels within recommended targets. Compared with CvHD patients, patients in the NHD group had a significant decrease in serum phosphate over the course of the study (0.49 mmol/L, 95% confidence interval 0.24–0.74; P=0.002) despite a significant reduction in the use of phosphate binders. Sixty‐one percent of patients in the NHD group compared with 20% in the CvHD group had a decline in intact PTH (P=0.003). Nocturnal hemodialysis lowers serum phosphate, calcium‐phosphate product and requirement for phosphate binders. The effects of NHD on PTH are variable. The impact of these changes on long‐term cardiovascular and bone‐related outcomes requires further investigation.  相似文献   

5.
Soft tissue and vascular calcifications are commonly present in uremic patients secondary to disturbances in calcium and phosphate balance and secondary to hyperparathyroidism. We report a uremic patient who developed uncontrolled hyperparathyroidism rapidly within 6 months after commencing hemodialysis (HD) therapy, with clinical presentations of tumoral calcinosis, calciphylaxis, and myocardial calcifications. After treatment with a low-calcium dialysate, non–calcium-containing phosphate binders, and parathyroidectomy, a dramatic resolution of soft tissue calcification was achieved. However, there was relatively little change in the vascular and other visceral calcifications over the 3-month observation period. This case highlights an unusual and rapid development of tertiary hyperparathyroidism, the importance of tight calcium/phosphate control in uremic patients, the potential hazards of a high calcium concentration dialysate, and the dangers of the overzealous use of active vitamin D therapy in HD patients with uncontrolled hyperparathyroidism.  相似文献   

6.
Benefits of dialysate with greater calcium (Ca) concentration are reported in nocturnal hemodialysis (NHD) to prevent Ca depletion and subsequent hyperparathyroidism. Studies with patients dialyzing against 1.25 mmol/L Ca baths demonstrate increases in alkaline phosphatase (ALP) and parathyroid hormone (PTH) and increasing dialysate Ca subsequently corrects this problem. However, whether 1.5 or 1.75 mmol/L dialysate Ca is most appropriate for NHD is yet to be determined, and differences in the effect on mineral metabolism of daily vs. alternate daily NHD have also not been well defined. We retrospectively analyzed mineral metabolism in 48 patients, from 2 institutions (30 at Monash and 18 at Geelong), undergoing home NHD (8 hr/night, 3.5-6 nights/week) for a minimum of 6 months. Thirty-seven patients were dialyzed against 1.5 mmol/L Ca bath and 11 patients against 1.75 mmol/L. We divided patients into 4 groups, based on dialysate Ca and also on the hours per week of dialysis, <40 (1.5 mmol/L, n=29 and 1.75 mmol/L, n=8) or > or =40 (n=4 and 7). We compared predialysis and postdialysis serum markers, time-averaged over a 6-month period, and the administration of calcitriol and Ca-based phosphate binders between 1.5 and 1.75 mmol/L Ca dialysate groups. Baseline characteristics between all groups were similar, with a slightly longer, but nonsignificant, duration of NHD in both 1.75 mmol/L dialysate groups compared with 1.5 mmol/L. The mean predialysis Ca, phosphate, and Ca x P were similar between the 1.5 and 1.75 mmol/L groups, regardless of NHD hr/week. Postdialysis Ca was significantly greater, with 1.75 vs. 1.5 mmol/L in those dialyzing <40 hr/week (2.64+/-0.19 vs. 2.50+/-0.12 mmol/L, p=0.046), but postdialysis Ca x P were similar (2.25+/-0.44 vs. 2.16+/-0.29 mmol(2)/L(2), p=0.60). Parathyroid hormone was also lower with 1.75 vs. 1.5 mmol/L baths in the <40 hr/week groups (31.99+/-26.99 vs. 14.47+/-16.36 pmol/L, p=0.03), although this difference was not seen in those undertaking NHD > or =40 hr/week. Hemoglobin, ALP, and albumin were all similar between groups. There was also no difference in vitamin D requirement when using 1.75 mmol/L compared with the 1.5 mmol/L dialysate. Multivariate analysis to determine independent predictors of postdialysis serum Ca showed a statistically significant positive association with predialysis Ca, dialysate Ca, and total NHD hr/week. An elevated dialysate Ca concentration is required in NHD to prevent osteopenia but differences in serum markers of mineral metabolism between 1.5 and 1.75 mmol/L Ca dialysate in NHD in our study were few. This was similar for patients undertaking NHD <40 or > or =40 hr/week, although differences in the frequency of NHD may also be as important as dialysate Ca with regard to serum Ca levels. With concerns that prolonged higher Ca levels contribute to increased cardiovascular mortality, the optimal Ca dialysate bath is still unknown and further studies addressing bone metabolism with larger NHD numbers are required.  相似文献   

7.
Chronic Kidney Disease patients suffer from Mineral and Bone Disorder (CKD‐MBD) leading to increased vascular and soft‐tissue calcification. The prevalence of soft tissue calcification in dialysis patients is not well described, and most cases describe such calcifications in hemodialysis patients. We describe a case of a massive soft tissue calcification in the right gluteal region in a peritoneal dialysis patient. The patient had severe pain and were disabled. The treatment was converted to an intensive hemodialysis regimen with a minimal calcium load and high dose of cinacalcet. During the treatment, the calcification diminished rapidly from a diameter of 26.6 to 2.9 cm, and the patient symptoms were relieved, leaving the patient with no pain or restriction in mobilization.  相似文献   

8.
9.
The optimal dialysate calcium (Ca) concentration for hemodialysis (HD) patients is set at 2.5 mEq/L according to Kidney Disease Outcomes Quality Initiative (K-DOQI) guidelines. This recommendation is opinion-based and could negatively affect secondary hyperparathyroidism. Studies have suggested that a dialysate Ca of 3.0 mEq/L is a compromise between bone protection and cardiovascular risk. The aim of our study was to investigate the effect on bone metabolism parameters after increasing the dialysate Ca concentration from 2.5 to 3.0 mEq/L. The dialysate Ca concentration in our patients was increased from 2.5 to 3.0 mEq/L. Patients with hypercalcemia, normal-high Ca levels with a high Ca-Phosphorus product (Ca x P), excessively suppressed parathyroid hormone (PTH), or a past medical history of calciphylaxis were excluded. Twenty-two patients were studied over 20 weeks. Parathyroid hormone levels decreased significantly (442 +/- 254 vs. 255 +/- 226 pg/mL; p=0.000), without significant changes in serum Ca, P, and Ca x P levels at any sampling point. Better control of secondary hyperparathyroidism allowed us to decrease the paracalcitol dosage in 6 of the 12 patients who had been treated with this drug at the beginning of the study. Other potential factors involved in PTH secretion were not modified. A significant improvement in the rate of patients with 3 or more K-DOQI parameters within the target ranges (8 [36%] vs. 12 [55%]; p=0.026) was observed. In the absence of hypercalcemia or excessively suppressed PTH, an increase from 2.5 mEq to 3.0 mEq/L in dialysate Ca concentration resulted in better control of secondary hyperparathyroidism without affecting Ca, P, and Ca x P levels, thus enabling us to reduce the dosage of vitamin D metabolites.  相似文献   

10.
An elevated calcium x phosphate product (Ca x P) is an independent risk factor for vascular calcification and cardiovascular death in dialysis patients. More physiological dialysis in patients undergoing nocturnal hemodialysis (NHD) has been shown to produce biochemical advantages compared with conventional hemodialysis (CHD) including superior phosphate (P) control. Benefits of dialysate with greater calcium (Ca) concentration are also reported in NHD to prevent Ca depletion and subsequent hyperparathyroidism, but there are concerns that a higher dialysate Ca concentration may contribute to raised serum Ca levels and greater Ca x P and vascular disease. The NHD program at our unit has been established for 4 years, and we retrospectively analyzed Ca and P metabolism in patients undergoing NHD (8-9 h/night, 6 nights/week). Our cohort consists of 11 patients, mean age 49.3 years, who had been on NHD for a minimum of 12 months, mean 34.3 months. Commencement was with low-flux (LF) NHD and 1.5 mmol/L Ca dialysate concentration, with conversion to high-flux (HF) dialyzers after a period (mean duration 18.7 months). We compared predialysis serum albumin, intact parathyroid hormone, P, total corrected Ca, and Ca x P at baseline on CHD, after conversion to LF NHD and during HF NHD. We also prospectively measured bone mineral density (BMD) on all patients entering the NHD program. Bone densitometry (DEXA) scans were performed at baseline (on CHD) and yearly after commencement of NHD. With the introduction of HF dialyzers, the Ca dialysate concentration was concurrently raised to 1.75 mmol/L after demonstration on DEXA scans of worsening osteopenia. Analysis of BMD, for all parameters, revealed a decrease over the first 12 to 24 months (N = 11). When the dialysate Ca bath was increased, the median T and Z scores subsequently increased (data at 3 years, N = 6). The mean predialysis P levels were significantly lower on LF NHD vs. CHD (1.51 vs. 1.77 mmol/L, p = 0.014), while on HF NHD P was lower again (1.33 mmol/L, p = 0.001 vs. CHD). Predialysis Ca levels decreased with conversion from CHD to LF NHD (2.58 vs. 2.47 mmol/L, p = 0.018) using a 1.5 mmol/L dialysate Ca concentration. The mean Ca x P on CHD was 4.56 compared with a significant reduction of 3.74 on LF NHD (p = 0.006) and 3.28 on HF NHD (p = 0.001 vs. CHD), despite the higher dialysate Ca in the latter. We conclude that an elevated dialysate Ca concentration is required to prevent osteopenia. With concerns that prolonged higher Ca levels contribute to increased cardiovascular mortality, the optimal Ca dialysate bath is still unknown. Better P control on NHD, however, reduces the overall Ca x P, despite the increased Ca concentration, therefore reducing the risk of vascular calcification.  相似文献   

11.
In hemodialysis (HD) patients, mineral metabolism (MM) disorders have been associated with an increased mortality rate. We report the evolution of MM parameters in a stable HD population undergoing long hemodialysis by performing an annual cross-sectional analysis for every year from 1994 to 2008. The therapeutic strategy has changed: the dialysate calcium concentration has decreased from a mean of 1.7 ± 0.1 to 1.5 ± 0.07 mmol/L and has been adapted to parathyroid hormone serum levels (from 1 to 1.75 mmol/L). The use of calcium-based and aluminum-based phosphate binders has decreased and they have been replaced by sevelamer; alfacalcidol has partly been replaced by native vitamin D. The percentage of patients with a parathyroid hormone serum level between 150 and 300 pg/mL has increased from 9% to 67% (P<0.001); the percentage of patients with phosphataemia between 1.15 and 1.78 mmol/L has increased from 39% to 84% (P<0.001). The percentage of those with albumin-corrected calcemia between 2.1 and 2.37 mmol/L has increased from 29% to 61% (P<0.001), and that of patients with a calcium-phosphorous product (Ca × P) level >4.4 mmol/L decreased from 8.8% to 2% (P=0.02). Although patients undergo long and intensive HD treatment, MM disorders are common. However, an appropriate strategy, mostly consisting of native vitamin D supplementation, progressive replacement of calcium-based phosphate binders with non–calcium-based ones, and individualization of dialysis session duration and dialysate calcium concentration, would result in a drastic improvement.  相似文献   

12.
Hypophosphatemia is observed in patients undergoing nocturnal hemodialysis. Phosphate is commonly added to the dialysate acid bath, but systematic evaluation of the safety and reliability of this strategy is lacking. The objectives of this study were 4‐fold. First, we determined whether predictable final dialysate phosphate concentrations could be achieved by adding varying amounts of Fleet® enema. Second, we assessed the stability of calcium (Ca) and phosphate dialysate levels under simulated nocturnal hemodialysis conditions. Third, we assessed for Ca‐phosphate precipitate. Finally, we evaluated whether dialysate containing Fleet® enema met the current sterility standards. We added serial aliquots of enema to 4.5 L of dialysate acid concentrate and proportioned the solution on Gambro and Althin/Baxter dialysis machines for up to 8 hours. We measured dialysate phosphate, Ca, pH, and bicarbonate concentrations at baseline, and after simulated dialysis at 4 and 8 hours. We evaluated for precipitation visually and by assessing optical density at 620 nm. We used inoculation of agar to detect bacteria and Pyrotell reaction for endotoxin. For every 30 mL of Fleet® (1.38 mmol/mL of phosphate) enema added, the dialysate phosphate concentration increased by 0.2 mmol/L. There were no significant changes in dialysate phosphate, Ca, pH, and bicarbonate concentrations over 8 hours. No precipitate was observed in the dialysate by optical density measures at 620 nm for additions of up to 90 mL of enema. Bacterial and endotoxin testing met sterility standards. The addition of Fleet® enema to dialysate increases phosphate concentration in a predictable manner, and no safety problems were observed in our in vitro studies.  相似文献   

13.
Tumoral calcinosis is an uncommon and severe complication of chronic renal failure. It is generally associated with the presence of a high‐serum calcium‐and‐phosphorus product. We report here a case of a patient on maintenance hemodialysis who presented with progressively increasing, solitary, tumor‐like swelling over the nape of the neck. A 50‐year‐old female on thrice weekly maintenance hemodialysis for the last 3 years presented with a small swelling over the nape of the neck that had been progressively increasing over the last 1 year to cricket ball size. The patient was investigated and diagnosed as having tumoral calcinosis. The metastatic calcification occurring in the patient was most likely related to high calcium × phosphate product with coexistent secondary hyperparathyroidism possibly aggravated by vitamin D therapy. The patient was treated with withdrawal of vitamin D therapy, strict control of serum phosphate levels with noncalcemic phosphate binders, and subtotal parathyroidectomy. The neck swelling started decreasing in size after 2 months of parathyroidectomy and there was marked clinical improvement with drop in serum parathormone levels, over a period of 6 months. After 2 years of parathyroidectomy, the neck swelling again started increasing in size with increase in serum parathormone levels. The patient was treated with cinacalcet and the neck swelling gradually decreased in size along with control of serum parathormone and phosphate levels.  相似文献   

14.
Introduction: Patients with chronic kidney disease (CKD) commonly experience 25‐hydroxyvitamin D3 (25‐OH‐D3) deficiency, and these patients have a higher incidence of cardiovascular diseases (CVDs) due to endothelial dysfunction (ED). The aim of our study was to investigate the effect of 25‐OH‐D3 deficiency and its supplementation on ED in patients with CKD. Methods: Twenty‐nine uremic patients on dialysis and 20 healthy controls were evaluated for ED by high‐resolution Doppler ultrasonography of the brachial artery. In addition, 25‐OH‐D3‐deficient patients (25‐OH‐D3 < 30 nmol/L) with CKD and healthy controls were evaluated for ED before and after 8 weeks of oral vitamin D (cholecalciferol, 50,000 units) treatment. All subjects were evaluated for percent flow‐mediated dilatation (%FMD), percent endothelium‐independent nitroglycerin‐induced vasodilatation (%NID), and bilateral carotid intima‐media thickness (CIMT). Findings: Patients on dialysis had lower %FMD and %NID 6.11 [2.27–12.74] and 10.96 [5.43–16.4], respectively, than controls 15.84 [8.19–22.49] and 21.74 [12.49–29.4], respectively (P < 0.05). Patients on dialysis had higher left and right CIMT (0.79 ± 0.15 and 0.78 ± 0.14, respectively) than controls (0.60 ± 0.09 and 0.59 ± 0.09, respectively; P < 0.05). In 25‐OH‐D3‐deficient patients with CKD, after vitamin D treatment, %FMD was significantly increased in dialysis patients (10.25 [7.8–12.8]) compared to before supplementation (5.4 [2.77–6.15]; P < 0.001). Discussion: These results indicated that dialysis patients had significantly lower blood 25‐OH‐D3 levels and higher CIMT than healthy subjects. In addition, vitamin D supplementation improved ED and increased %FMD in dialysis patients. Our findings suggest that vitamin D supplementation in dialysis patients might prevent CVD.  相似文献   

15.
For the treatment of secondary hyperparathyroidism (HPTH-II) in dialysis patients and hypercalcemia in patients with parathyroid carcinoma. Calcimimetics are a new class of drugs approved in the European Community and the United States by the Food and Drug Administration that were designed to suppress parathyroid hormone (PTH) levels with a simultaneous reduction in serum calcium and phosphorus levels, and calcium phosphorus product (Ca x P). Hypocalcemia is a frequent finding during the correction phase of the HPTH-II with calcimimetics. By contrast, the appearance of a hypercalcemia has yet to be described. In this paper, we report a case of severe hypercalcemia of immobilization in a 40-year-old hemodialyzed woman treated by cinacalcet HCl for a severe HPTH-II (PTH>1,000 pg/mL). A kidney transplantation recipient 1983 to 1995, she was diagnosed with Charcot-Marie Tooth disease in 1991. She had multiple orthopedic interventions for kidney-related osteoarticular problems probably favored by the kidney graft and the immunosuppressive treatment. While she was receiving the maximum dose of 180 mg/day of cinacalcet HCl and PTH at 443 pg/mL, she needed to be hospitalized for a right hip prothesis. Two weeks after the intervention she developed a symptomatic hypercalcemia of 3.57 mmol/L which was resistant to several measures including lowering the calcium concentration in the dialysate, withdrawing all vitamin D and calcium supplementation and the administration of calcitonin. Her serum calcium level was finally stabilized in the 2.37-2.95 mmol/L by administration of a single intravenous dose of pamidronate. This observation illustrates that the pharmacological activation of the parathyroid CaR and other putative CaR on bone cells by calcimimetics did not protect against the occurrence of hypercalcemia of immobilization favored by a severe HPTH-II in a hemodialysis patient.  相似文献   

16.
17.
Accelerated vascular calcification is a well‐described complication of chronic kidney disease often affecting large and small vessels alike through a variety of mechanisms. Accordingly, dysregulation of calcium and phosphate balance, vitamin D metabolism, hyperparathyroidism, and endothelial injury can lead to both macrovascular and microvascular complications. We describe a 56‐year‐old Hispanic male with a history of end‐stage renal disease, diabetes mellitus type 2, and medical noncompliance who developed sequential digital ischemia and necrosis involving both hands as well as right foot as a result of Mönckeberg sclerosis. An extensive metabolic and serologic workup was unrevealing but radiographic studies and histopathology revealed the diagnosis. A multifaceted approach was instituted including wound debridement and amputations along with intensive medical support. In addition to improving hypertensive control and striving for improved calcium and phosphate balance, sodium thiosulfate solution was administered for more than 1 year. This aggressive approach allowed his wounds to heal and has arrested further digital ischemia from occurring.  相似文献   

18.
The purpose of this study was to investigate the correlation of conjunctival and corneal calcification (CCC) with cardiovascular calcification in patients undergoing maintenance hemodialysis (MHD). A total of 122 patients undergoing MHD in our hospital were included in this study. Conjunctival and corneal calcification was examined by slit lamp and graded. Abdominal aortic calcification (AAC), aortic valve calcification (AVC), and mitral valve calcification (MVC) were determined by X‐ray or ultrasound. The correlation of CCC with AAC, AVC, and MVC was analyzed. Biochemical, hematological, and cardiovascular data were compared between patients with different severity of CCC or AAC. Mitral valve calcification was significantly associated with AAC in our patients. Conjunctival and corneal calcification positively correlated with AAC. We also found that patients with severe CCC exhibited significantly higher levels of serum calcium, phosphate, product of calcium and phosphate, serum copper, cystatin, intact parathyroid hormone, and vitamin D than patients with mild CCC. In addition to significantly increased levels of serum calcium, product of calcium and phosphate, serum copper, and cystatin, patients with severe AAC also had higher high‐sensitivity C‐reactive protein level and greater left ventricular posterior wall thickness and left ventricular end‐diastolic interventricular septum thickness than patients with mild AAC. Our results suggest that patients undergoing MHD with severe CCC or AAC have high degree of mineral metabolism disorder, inflammation, and cardiovascular function disorder. The strong correlation between CCC and AAC indicates that CCC score might be used as an indirect indicator to predict cardiovascular risks in patients undergoing MHD.  相似文献   

19.
20.
A 19-year-old male presented with chest pain and dyspnea. He was anephric following nephrectomy for focal segmental glomerulosclerosis, had a subsequent failed transplant, and had been dialysis dependent for 3 years. Workup revealed hyperparathyroidism and an abnormal chest X-ray and computed tomography scan, significant for massive extra-skeletal pulmonary calcification. A markedly abnormal Technitium99 methylene diphosphonate (Tc99m-MDP) bone scan confirmed the clinical suspicion of metastatic pulmonary calcification. Metastatic pulmonary calcification (MPC) is common, occurring in 60% to 80% of dialysis patients on autopsy and bone scan series. It may lead to impaired oxygenation and restrictive lung disease. Typically, the calcium crystal is whitlockite rather than hydroxyapatite, which occurs in vascular calcification. Four major predisposing factors may contribute to MPC in dialysis patients. First, chronic acidosis leaches calcium from bone. Second, intermittent alkalosis favors deposition of calcium salts. Third, hyperparathyroidism tends to cause bone resorption and intracellular hypercalcemia. Finally, low glomerular filtration rate can cause hyperphosphatemia and an elevated calcium-phosphorus product. There may be other factors. Some authors suggest that the incidence of MPC in recent years may be lower due to improved dialysis techniques. The diagnosis is confirmed by biopsy, but can be suspected by typical findings on a Tc99m-MDP bone scan. Therapy is limited to ensuring adequate dialysis, correcting calcium-phosphorus product, and hyperparathyroidism; discontinuing vitamin D analogues may help. Conflicting reports show that transplantation may either improve or worsen the situation. MPC should be considered in dialysis patients who have characteristic abnormal chest radiography and/or pulmonary symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号