首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that a previously derived integral equation for electromagnetic scattering from a homogeneous dielectric body (see ibid., vol.AP-32, p.166-172, Feb. 1984) does not have a unique solution at resonant frequencies of the cavity formed by making the surface S of the body perfectly conducting and filling the region internal to S with the external medium. This integral equation was formulated so that an equivalent electric current radiates in the presence of the homogeneous external medium to produce the scattered field external to the body. A combination of equivalent electric and magnetic currents is used to formulate an integral equation whose solution is always unique  相似文献   

2.
A single integral equation formulation for electromagnetic scattering by three-dimensional (3-D) homogeneous dielectric objects is developed. In this formulation, a single effective electric current on the surface S of a dielectric object is used to generate the scattered fields in the interior region. The equivalent electric and magnetic currents for the exterior region are obtained by enforcing the continuity of the tangential fields across S. A single integral equation for the effective electric current is obtained by enforcing the vanishing of the total field due to the exterior equivalent currents inside S. The single integral equation is solved by the method of moments. Numerical results for a dielectric sphere obtained with this method are in good agreement with the exact results. Furthermore, the convergence speed of the iterative solution of the matrix equation in this formulation is significantly greater than that of the coupled integral equations formulation  相似文献   

3.
A numerical procedure for the solution of electromagnetic scattering problems involving inhomogeneous dielectric cylinders of arbitrary cross section is discussed. The cases of illumination by both transverse magnetic (TM) and transverse electric (TE) plane waves are considered. The scattering problems are modeled via a hybrid integral-equation/partial-differential-equation approach. The method of moments is applied to obtain a system of simultaneous equations that can be solved for the unknown surface current densities and the interior electric field. The interior region partial differential equation and the exterior region surface integral equation are coupled in such a manner that many existing surface integral equation computer codes for treating problems involving scattering by homogeneous dielectric cylinders can be modified easily to generate the block of the matrix corresponding to the surface current interactions. The overall system matrix obtained using the method of moments is largely sparse. Numerical results are presented and compared with exact solutions for homogeneous and inhomogeneous circular cylinders  相似文献   

4.
The quasistatic fields generated by an electrode mounted on a perfectly conducting pad of finite extent and embedded in a planar stratified medium are analyzed. An integral equation in the spectral domain is derived for the outflowing current density distribution on the pad-electrode surface. The method of moments is then applied to solve the integral equation. The effects of the electric properties of the stratified medium and the standoff thickness on the total electrode current are investigated. Several conductivity profiles modeling different practical measurement environments are also considered  相似文献   

5.
The method of moments technique for analyzing electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body is presented based on the combined field integral equations. The body is assumed to be illuminated by a plane wave. The surface equivalence principle is used to replace the body by equivalent electric and magnetic surface currents. These currents radiating in unbounded free space produce the correct scattered field outside. The negatives of these currents produce the correct total internal field, when radiating in an unbounded chiral medium. By enforcing the continuity of the tangential components of the total electric and magnetic fields on the surface of the body, a set of coupled integral equations is obtained for the equivalent surface currents. The surface of the body is modeled using triangular patches. The triangular rooftop vector expansion functions are used for both equivalent surface currents. The coefficients of these expansion functions are obtained using the method of moments. The mixed potential formulation for a chiral medium is developed and used to obtain explicit expressions for the electric and magnetic fields produced by surface currents. Numerical results for bistatic radar cross sections are presented for three chiral scatterers - a sphere, a finite circular cylinder, and a cube.  相似文献   

6.
The radar cross section (RCS) of an arbitrarily shaped, homogeneous dielectric body of revolution (BOR) is evaluated by the surface integral equation (SIE) formulation and the method of moments. Method accuracy is verified by the good agreement with the exact solutions for the RCS of a dielectric sphere. To demonstrate the advantages of this method, the RCS for a complex BOR model of human torso is computed with a nonaxially incident plane wave. Seven Fourier modes are considered in the computation. The SIE and approximate integral equation (AIE) formulations are next given for the RCS evaluation of a composite dielectric and conducting BOR. For the cases considered, both formulations give the same surface currents and RCS results. However, significant savings in computer storage and CPU time are realized for the AIE approach, since only one current (electric or magnetic) need be determined for RCS evaluation  相似文献   

7.
In this paper, a solution is developed to calculate the electric field at one point in space due to an electric dipole exciting an arbitrarily shaped dielectric body of revolution (BOR). Specifically, the electric field is determined from the solution of coupled surface integral equations (SIE) for the induced surface electric and magnetic currents on the dielectric body excited by an elementary electric current dipole source. Both the interior and exterior fields to the dielectric BOR may be accurately evaluated via this approach. For a highly lossy dielectric body, the numerical Green's function is also obtainable from an approximate integral equation (AIE) based on a surface boundary condition. If this equation is solved by the method of moments, significant numerical efficiency over SIE is realized. Numerical results obtained by both SIE and AIE approaches agree with the exact solution for the special case of a dielectric sphere. With this numerical Green's function, the complicated radiation and scattering problems in the presence of an arbitrarily shaped dielectric BOR are readily solvable by the method of moments.  相似文献   

8.
In this paper the Maxwell-Minkowski equations are used to find a general integral for the electromagnetic fields in an infinite moving medium. The medium is assumed to be homogeneous, isotropic, and to move with a constant velocity much less than the speed of light. Only time-harmonic fields are considered. A wave equation for the electric field is derived and is integrated by means of a Green's Identity and an appropriately defined Dyadic Green's Function. The result gives the electric field inside a volume of space in terms of known sources in the volume and the tangential components of the electric and magnetic fields over the enclosing surface. Finally, the fields radiated by a point dipole are found.  相似文献   

9.
The power deposited by a microstrip antenna into a layered biological structure is presented. The solution is based on an integral equation for the surface current density on the antenna and on an electric Green's dyadic for the fields inside a planar stratified medium. The integral equation is solved using the method of moments in conjunction with the point-matching technique. The modeling of the surface current takes the edge conditions into account. Special attention is devoted to a correct modeling of the excitation of the antenna by a coaxial feed. The numerical results focus on the power deposition as a function of depth  相似文献   

10.
Heretofore, the electromagnetic field produced by a specified tangential electric field in an aperture in the wall of an arbitrarily shaped cavity has most often been expanded in terms of cavity modes. An alternative approach, that of the electric field integral equation is presented. In this approach, the cavity field is expressed as the field of a surface density of tangential electric current, or a surface density of tangential magnetic current, or a combination of surface densities of tangential electric and magnetic currents on the boundary of the cavity. Each surface density is characterized by a single tangential vector function which is determined by the integral equation requiring that the part of the electric field tangent to the boundary of the cavity must reduce to the specified tangential electric field in the aperture and zero elsewhere on the boundary of the cavity. The electric field integral equation method is specialized to more easily determine the field inside an arbitrary cylindrical cavity excited by a tangential electric field in an aperture in its lateral wall. The method is further specialized to a circular cavity  相似文献   

11.
An analysis is presented for determining the current induced by a known transverse electric excitation on a perfectly conducting cylinder located near the planar interface separating two semi-infinite, homogeneous half-spaces of different electromagnetic properties. The conducting cylinder of general cross section is of infinite extent and the excitation is transverse electric to the cylinder axis. Two types of integral equations, the magnetic field integral equation and the electric field integral equation, are formulated, and the Green's functions for the integral equations are derived in an appendix. Numerical solution methods for solving the integral and integrodifferential equations are presented. For a strip parallel or perpendicular to the interface, a circular cylinder, and a rectangular cylinder, data are presented and discussed for selected parameters, including the case of a cylinder resting on the interface.  相似文献   

12.
A domain integral equation approach to computing both the propagation constants and the corresponding electromagnetic field distributions of guided waves in an integrated optical waveguide is discussed. The waveguide is embedded in a stratified medium. The refractive index of the waveguide may be graded, but the refractive indices of the layers of the stratified medium are assumed to be piecewise homogeneous. The waveguide is regarded as a perturbation of its embedding, so the electric field strength can be expressed in terms of domain integral representation. The kernel of this integral consists of a dyadic Green's function, which is constructed using an operator approach. By investigating the electric field strength within the waveguide, it is possible to derive an integral equation that represents an eigenvalue problem that is solved numerically by applying the method of moments. The application of the domain integral equation approach in combination with a numerically stable evaluation of the Green's kernel functions provides a new and valuable tool for the characterization of integrated optical waveguides embedded in stratified media. Numerical results for various channel and ridge waveguides are presented and are compared with those of other methods where possible  相似文献   

13.
The paper presents an efficient procedure to calculate the electromagnetic field scattered by an inhomogeneous object consisting of N+1 linear isotropic homogeneous regions. The procedure is based on surface integral equation (SIE) formulations and the method of moments. The method of moments (MM) is used to reduce the integral equations for each homogeneous dielectric region into individual matrices. These matrices are each solved for the equivalent electric current in terms of the equivalent magnetic current. A simple algebraic procedure is used to combine these solutions and to solve for the magnetic current on the outer dielectric surfaces of the scatterer. With the magnetic current determined, the electric current on the outer surface of the scatterer is calculated. Because the matrix corresponding to each dielectric region is solved separately, the authors call this procedure the region-by-region method. The procedure is simple and efficient. It requires less computer storage and less execution time than the conventional MM approach, in which all the unknown currents are solved for simultaneously. To illustrate the use of the procedure, the bistatic and monostatic radar cross sections (RCS) of several objects are computed. The computed results are verified by comparison with results obtained numerically using the conventional numerical procedure as well as via the series solution for circular cylindrical structures. The possibility of nonunique solutions has also been investigated  相似文献   

14.
一种求解目标内谐振时散射截面的有效方法   总被引:2,自引:1,他引:1  
众所周知,在内谐振频率点上,用矩量法求解电场或磁场表面积分方程将得到不正确的表面电流。文中应用奇异值分解和正交化方法对由电场积分方程计算出的表面电流进行修正,从而得到目标表面上产生散射场的真实电流分布。文中计算了一无限长理想导体圆柱内谐振时的散射截面,所得结果与解析解一致,并对一无限长理想导体正方柱的后向散射截面进行了计算,结果表明本文方法是有效和准确的。  相似文献   

15.
A domain-integral equation method is presented to determine both propagation constants and the electromagnetic field distributions of guided surface wave modes in integrated optical waveguides. Both the waveguide and its multilayered embedding are anisotropic. The permittivity tensor of the embedding is assumed to be piecewise homogeneous. The kernels of the domain-integral equations consist of Green's tensors. The integral equations form an eigenvalue problem where the electric field strength represents the eigenvector. This problem is solved numerically by applying the method of moments. Numerical results are presented for an anisotropic ridge waveguide, embedded in an anisotropic multilayered medium  相似文献   

16.
Two techniques are developed for the analysis of finite microstrip structures. They are based on electric and magnetic field integral equation (EFIE and MFIE) formulations of the surface equivalent principle and multiple network theory (SEMN) method. Using pulse surface basis functions, the surface of each homogeneous dielectric body is modeled by small flat segments of arbitrary geometry and constant electromagnetic field. Using the surface equivalence principle and the Green's functions of the homogeneous space, the admittance and impedance matrices are computed. Then, the boundary conditions and multiple network theory are applied to determine the overall characteristic of the entire space. Several radiation and scattering examples are numerically analyzed and their calculated near and far fields are presented. The numerical results of the two formulations are then compared with measurement and those of HFSS and ENSEMBLE.  相似文献   

17.
A simple moment solution is presented to the problem of electromagnetic scattering from a homogeneous chiral cylinder of arbitrary cross-section. The cylinder is assumed to be illuminated by either a TE or a TM wave. The surface equivalence principle is used to replace the cylinder by equivalent and magnetic-surface currents. These currents radiating in unbounded external medium produce the correct scattered field outside. When radiating in an unbounded chiral medium, they produce the correct total internal field. By enforcing the continuity of the tangential components of the total electric field on the surface of the cylinder, a set of coupled integral equations is obtained for the equivalent surface currents. Unlike a regular dielectric, the chiral scatterer produces both copolarized and cross-polarized scattered fields. Hence, both the electric and magnetic current each have a longitudinal and a circumferential component. These four components of the currents are obtained by using the method of moments (MoM) to solve the coupled set of integral equations. Pulses are used as expansion functions and point matching is used. The Green's dyads are used to develop explicit expressions for the electric field produced by two-dimensional surface currents radiating in an unbounded chiral medium. Some of the advantages and limitations of the method are discussed. The computed results include the internal field and the bistatic and monostatic echo widths. The results for a circular cylinder are in very good agreement with the exact eigenfunction solution  相似文献   

18.
渐近波形估计技术应用于导体柱RCS方向图的快速获取   总被引:8,自引:1,他引:7  
童创明  洪伟 《电子学报》2001,29(9):1198-1201
本文基于渐近波形估计(AWE)技术和矩量法(MOM)快速预测任意形状导电柱体(PEC)的单站RCS方向图.首先采用矩量法求解导体柱的电场积分方程,得到导体柱在某一给定方向入射波照射下的表面电流的低阶矩量,然后利用AWE技术求出在任意方向入射波照射下用有理分式函数表示的表面电流,进而计算出RCS方向图.计算结果表明AWE完全能逼近MOM精确计算的曲线,同时在计算速度上可加快几十倍.  相似文献   

19.
A method is presented which enables one to calculate the scattered field very close to the surface of a perfectly conducting body as well as at the surface itself. The method is based on the representation of the scattered field by an integral over the surface current distribution. The integrand is treated by identity transformations that the singular terms can be integrated analytically, while the remaining nonsingular terms are integrated numerically. The surface current distribution is determined by the magnetic field integral equation. The theory is validated by experiments with the scattered field of a metallic cube with an edge length of a wavelength. The current distribution and the normal as well as the tangential electric field at the surface of the cube are measured by small probes, and the results are compared to those of the theory. The theoretical results of the current distributions are presented as gray value graphics-those of the near-field distribution of a cube and an airplane with the help of lines of constant phase  相似文献   

20.
A surface integral equation (SIE) formulation is derived in order to analyze the scattering by a homogeneous dielectric body inside a cavity to which cylindrical waveguides are coupled. Cavity and dielectric body may be arbitrarily shaped; the waveguides may be of arbitrary cross section. Completely closed dielectric-loaded cavities and structures containing metal inserts or magnetic conductors are considered as well. It is shown that the SIE formulation reduces a field problem by one dimension leading to highly efficient algorithms. From numerical results, the influence of surface current expansions is studied. The accuracy of the method is demonstrated by field plots and by the comparison of numerical results to those of other methods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号