首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用X射线衍射分析和流态化酸解水解工艺,研究预氧化温度和时间对钛铁矿晶体结构及其产物金红石的影响。结果表明,预氧化温度低于800℃时,生成了金红石微晶和FeTiO3·Fe2O3固溶体,预氧化温度高于850℃时,生成了明显的金红石相和铁板钛矿Fe2O3·TiO2,原来的钛铁矿结构被破坏。产物金红石TiO2纯度随着预氧化温度的升高先增加后减少,预氧化温度为800℃时,TiO2纯度最高,为90.03%。预氧化时间从15 min增加到60 min,逐渐生成金红石微晶和FeTiO3·Fe2O3固溶体,没有破坏原来钛铁矿的结构,预氧化时间对产物金红石的TiO2纯度影响较小。  相似文献   

2.
微波碳热还原攀枝花低品位钛精矿   总被引:1,自引:0,他引:1  
对攀枝花低品位钛精矿进行了微波还原试验研究。研究了预氧化、配碳量、添加剂等条件对还原钛铁矿中铁金属化率的影响。试验结果表明:在预氧化温度800℃、硼砂配比3%、焦粉配比10%、微波还原温度1000~1100℃条件下,还原60 min,还原产物铁的金属化率超过90%。分析微波强化钛铁矿还原的机理在于:微波热应力在球团内部产生大量孔隙和裂纹促进了还原气氛的扩散,快速还原产生的大量铁晶核加速了还原反应。  相似文献   

3.
本工作对钒钛磁铁矿中三种精矿粉的物相组成及还原过程进行了研究。 A、B二铁精矿的主要物相组成为磁铁矿和钛铁矿,其中网格状显微结构是钛铁晶石的氧化产物——钛铁矿和磁铁矿。在500~800℃温度范围内观察到钛铁晶石在还原过程中经过钛铁矿。钛铁矿在还原过程中若有过剩的氧化铁存在,也经过钛铁晶石。粗粒钛铁矿经过预氧化可显著改善其还原性。B矿在600℃开始出现过还原。  相似文献   

4.
以攀枝花低硅钛精矿为研究对象,研究氧化温度和时间对钛铁矿物相结构和还原的影响,同时对预氧化钛铁矿不同温度和时间下还原失重率和金属化率变化情况进行分析。研究结果表明:钛精矿的氧化在较短时间内可完成,随着氧化温度的升高,钛精矿主要物相变化过程为FeTiO_3→Fe_2O_3+TiO_2→Fe_2TiO_5+Fe_2O_3+TiO_2;在钛铁矿的还原过程中,还原温度和时间对钛铁矿还原的金属化率影响较大,在还原温度大于1 300℃,时间大于8 h后变化不明显;显微结构分析发现,高温还原后金属铁扩散发生聚集,形成球形和棒状金属铁颗粒,其尺寸大约为10μm。  相似文献   

5.
以攀枝花钛铁矿为试验对象,详细研究了预氧化对岩矿型钛铁矿还原行为的作用机理。结果表明,未处理的岩矿型钛铁矿的还原速率较慢,而预氧化能够有效提高还原速率。这是因为在预氧化矿还原前期会发生Fe~(3+)→Fe~(2+)(FeTiO_3)的快速转变反应。该反应会生成大量孔洞,破坏了钛铁矿的致密结构,有利于后续还原反应的进行。预氧化焙烧温度越高,焙烧时间越长,钛铁矿的还原速率越快。此外,预氧化还会使后续还原产生的金属Fe晶粒变小,分布变弥散。  相似文献   

6.
对采用流态化技术,还原多钒酸铵(APV)制取三氧化二钒工艺及相关参数进行了研究,得到了合格的三氧化二钒产品.试验表明: APV在还原温度700~750 ℃、保温时间10~15 min的条件下可以得到TV≥63%的三氧化二钒产品,比回转窑方法所需时间短、温度低;更容易实现对温度和时间的控制,得到较高品位的三氧化二钒产品(TV>67%);流态化生产的三氧化二钒产品C含量低,更有利于钒铁冶炼对C含量的控制;同时,流态化生产三氧化二钒效率高、还原剂消耗少、设备固定、相对安全性更高.  相似文献   

7.
研究了预氧化对攀枝花钛铁矿还原行为的影响.结果表明:预氧化加快了钛铁矿铁氧化物的还原速率,提高了还原产物铁的金属化率.其作用机理是:钛铁矿在预氧化过程中形成了假金红石、三氧化二铁、金红石和三价铁板钛矿等新的物相,破坏了原有矿物结构,颗粒内部形成了大量孔隙,有利于增大颗粒的比表面积,改善还原过程气体的扩散条件;经预氧化处理的钛铁矿在预氧化过程中形成的新物相将被重新还原,新生钛铁矿活性高,还原产物的显微结构也得到了进一步的改善.  相似文献   

8.
采用氧化还原-盐酸常压搅拌浸出法对钛铁矿进行选择性浸出,研究了氧化还原预处理对钛铁矿粒度、结构、表面形貌的影响,并考察了不同浸出条件对钛铁矿中Fe、Ti浸出率及浸出渣中Ti O_2品位的影响。结果表明,钛铁矿经过氧化还原后颗粒表面粗糙程度增加,粒径有所增大。采用1 000℃氧化1 h,800℃H2还原1 h的改性矿浸出,优化浸出条件为:液固比5∶1,盐酸浓度4 mol/L,反应温度90℃,浸出时间5 h。优化条件下Fe和Ti的浸出率分别为93.89%和3.28%,最终获得Ti O_2品位87.51%的富钛料,同时很好地保持了原矿的粒度。  相似文献   

9.
氧化焙烧能够有效脱除钛铁矿中的有害元素S。对攀枝花钛铁矿中S元素的存在形式、氧化脱硫的工艺条件和脱硫机理进行了详细地研究。结果表明,攀枝花钛铁矿中大部分S以FeS形式存在,少量S固溶在FeTiO3和硅酸盐相中。在氧化焙烧过程中,钛铁矿中的FeS首先被脱除,然后才是固溶S被脱除。当氧化温度在650~750℃时,氧化焙烧仅发生FeS的脱除,脱硫反应速率快,钛铁矿脱硫率最高为85%~87%。固溶S的脱除需要更高的焙烧温度,且反应速率相对较慢。当氧化温度升至950~1 050℃时,钛铁矿经过60 min焙烧,即可脱除大部分FeS和固溶S,脱硫率达到96%~98%。  相似文献   

10.
苟淑云 《钢铁钒钛》2004,25(1):18-18
为改善磁铁矿的还原性能,通常可将其在还原前预氧化成赤铁矿。在实验条件下,研究了钛铁矿(新西兰铁砂矿)预氧化对其矿相结构和被CO还原行为的影响。钛铁矿的主要矿相组成为固溶了Fe3O4 -FeTiO4 的钛磁铁矿和具有立方结构的尖晶石。在非等温预氧化过程中,钛磁铁矿在873K以上开始氧化,在873~10 73K温度区间被氧化成立方结构的磁赤铁矿,然后转化为菱形结构的钛赤铁矿(Fe2 O3-FeTiO3固溶其中) ,在12 73K以上,钛磁铁矿直接氧化为钛赤铁矿,进一步氧化成为铁板钛矿(Fe2 TiO5)。在等温预氧化过程中,温度控制为12 73K ,钛磁铁矿被氧化为钛赤…  相似文献   

11.
庞建明  郭培民  赵沛 《钢铁》2013,48(6):85-89
 通过研究钛铁矿的还原热力学可知,钛铁矿的还原难度大于普通铁矿。动力学研究表明,通过粉体细化,可以加速钛铁矿的还原速度;用碳还原钛铁矿的最佳温度应选择在900~1100℃。金属铁的渗碳有利于铁的晶粒长大,铁中的渗碳量越高,越有利于金属铁的聚集;外场对铁晶粒长大有明显作用,为金属铁与钛渣的充分分离提供了最佳条件。通过晶粒长大技术将还原后的细微铁晶粒长大到一定粒度,通过简单破碎和磁选,即可得到钛渣和铁产品。开发的钛铁矿高效利用新技术具有反应温度低、无需高温熔分等特点,从而实现高效率、低能耗及低成本生产钛渣和铁产品。  相似文献   

12.
许晓阳 《黄金》2020,41(4):50-53
贵州某卡林型难处理金矿石高硫高砷,且有机碳含量高,金主要嵌布于硫化物中,采用常规氰化工艺,金浸出率仅为10%。针对该矿石性质,采用加压氧化-氰化工艺进行处理,小型试验金浸出率提高至94.0%以上。在小型试验基础上进行中试连续试验,结果表明:在温度220℃,矿浆浓度16.4%~19.0%,氧分压0.6~0.8 MPa,停留时间45~60 min时,硫氧化率>95.0%,且不论氧化液是否返回,金浸出率平均可达94.0%以上。  相似文献   

13.
锌精矿的高低过剩空气系数交替高温氧化焙烧   总被引:1,自引:0,他引:1  
介绍了在 8m2 沸腾炉中于 1170~ 12 0 0℃ ,炉底鼓风量 5 15 0~ 5 2 5 0m3 /h ,焙烧强度 7 5t/(m2 ·d)条件下 ,使用高低过剩空气系数交替高温氧化焙烧工艺焙烧锌精矿的生产实践 ,焙砂脱硫率 97%,脱铅率 99%,脱镉率98%,焙砂含S小于 0 2 5 %,可用于直接法生产ZnO。  相似文献   

14.
Effect of Temperature on Carbothermic Reduction of Ilmenite   总被引:1,自引:1,他引:0  
The reduction of ilmenite (FeTiO3) has been studied extensively. Temperature for the carbothermic reduction of ilmenite ranges from 900 ℃ to 1 400 ℃, and the reduction degree of Panzhihua ilmenite increases with increasing temperature. X ray diffraction analysis and SEM analysis were used to identify the phase before and after reduction, and to identify the morphology of reduced samples respectively. It is found that the reaction initiates at about 860 ℃. The reaction rate varies with temperature simultaneously. Impurities in Panzhihua ilmenite decrease the reduction degree. Magnesium and calcium oxide-rich zone is formed preventing complete reduction of Fe^2 . In general, the reaction products are iron, Ti3O5 and carbon.  相似文献   

15.
本文介绍了在铅阳极泥氧化精炼过程中,通过对分银炉进行低温造渣,造渣温度控制在800℃~900℃,可有效降低辅料消耗,缩短生产周期。同时该工艺调整具有降低员工劳动强度,提高生产效率的优点。  相似文献   

16.
X65、X70管线钢高温延塑性的对比分析   总被引:2,自引:0,他引:2  
 讨论了X65、X70管线钢铸坯不同温度区间高温延塑性的差异。根据Gleeble 1500热/力模拟机得到的数据绘出X65、X70钢铸坯断面收缩率-温度曲线,利用扫描电镜、金相显微镜对断口形貌及组织进行分析,得出两钢种在各温度区间塑性差别的主要原因:①高温脆性区(tl~1 300 ℃)X70塑性较好,碳含量越高,硫、磷在奥氏体晶界的偏析量越多;②高温高塑性区(1 100~1 300 ℃)X65延塑性较好,钛含量越高,使得TiN析出物越粗大,分布越随机;③在塑性槽高温端(900~1 100 ℃),低熔点硫化物等析出,动态再结晶发生温度不同,导致两个钢种塑性明显有差别;④在塑性槽两相区(700~900 ℃),先共析铁素体的出现是两个钢种塑性低的共同原因,钛可以促进铁素体在晶内和晶界同时生成,最后X65塑性恢复较好。  相似文献   

17.
王广  薛庆国  王静松 《钢铁》2015,50(11):14-20
 基于转底炉珠铁工艺,以一种高铝高硫低品位铁矿粉和无烟煤为原料,在实验室条件下进行了还原熔分试验研究,考察了温度、配碳量、碱度和添加剂对高铝铁矿含碳球团还原熔分行为的影响,并分析了碱度和添加剂对珠铁中硫质量分数的影响。试验结果表明,温度为1 350~1 450 ℃时,空白球团熔分效果较差,金属铁渗碳量较低;提高配碳量,金属铁渗碳量略有增加,但熔分效果仍较差;碱度增加会促进球团还原,1 450 ℃时,碱度为0.6、0.8、1.0、1.2的球团可以实现渣铁良好分离,珠铁中硫质量分数逐渐降低,碱度为1.2时降低较明显;Na2CO3配比增加,球团熔分也会逐渐变差,1 450 ℃时球团基本均可以熔分,珠铁中的硫质量分数逐渐降低,但脱硫效果不明显;当碱度为1.2、Na2CO3配加为8%、CaF2配加为4%时,球团可以在1 450 ℃下良好熔分,脱硫效果显著,珠铁中硫质量分数为0.085%,脱硫率达到96.5%,所得珠铁基本满足炼钢要求。  相似文献   

18.
电焊条用含钛原料的介电特性研究对于拓宽焊条制造原料来源和发展微波加热制备还原钛铁矿具有重要的指导意义.采用同轴探头反射法测定了钛铁矿粉末(含TiO237%~47%)在2.45 GHz频率下和20~80℃之间的介电特性,并测定钛铁矿在微波场下的温升特性.研究结果表明:钛铁矿的介电常数和介电损耗因子及损耗角正切随着温度的上升而增加,介电特性总体随着含钛品位增高逐渐增强.钛铁矿的穿透深度在40~80℃之间随温度增加逐渐降低,微波加热钛铁矿的最佳物料厚度为3~6 cm.微波场下钛铁矿的升温曲线表明温度和微波加热时间具有一个非线性关系.  相似文献   

19.
为深入理解不同热处理工艺参数对铝硅镀层热成形钢组织性能的影响规律,主要研究了加热温度和保温时间对铝硅镀层热成形钢的硬度、微观组织、镀层厚度和镀层成分的影响。结果表明,当加热温度不大于 900 ℃ 时,铝硅镀层热成形钢的硬度随着保温时间的增加而增加;当加热温度大于 900 ℃ 时,铝硅镀层热成形钢的硬度随着保温时间的增加而下降。当加热温度为850~930 ℃,保温时间为 4、8 min 时铝硅镀层热成形钢的微观组织在模具淬火冷却过程中均转化成为马氏体。在相同加热温度下,铝硅镀层热成形钢合金层的厚度随着保温时间的增加而增大,当加热温度升高至 930 ℃ 时,镀层因氧化而挥发严重,导致镀层变薄,所以铝硅镀层热成形钢的加热温度应控制在 930 ℃ 以下。保温温度升高、保温时间增加导致元素扩散显著,聚集的硅元素含量和面积由于其不断向四周扩散而降低。同时铁元素大量扩散到镀层中,镀层中铁元素含量增加显著。高温下,镀层发生明显的氧化反应,氧化反应促进了微孔洞的形核和长大。  相似文献   

20.
Ilmenite produced from the Panxi area in China has high impurities such as Ca and Mg. High-grade titanium (Ti) slag can be obtained by the electric arc furnace process, a traditional method of treating ilmenite. Thus, Ti slag prepared from the Panxi ilmenite contains high CaO and MgO, exceeding 5 pct of the slag content. This high CaO and MgO content confers considerable difficulty in producing titania (TiO2) white using fluidizing chlorination. In this study, a new process named vacuum separation was found to produce high-grade TiO2 materials. The effects of separation temperature and time on the TiO2 grade were studied. The high-grade TiO2 slag, which has 93 pct TiO2, <0.1 pct MgO, <1.2 pct SiO2, and <0.5 pct CaO, can be produced at 1823 K (1550 °C) in 45 minutes through the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号