首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The purpose of this study was to determine the effect of an intracoronary bolus injection of adenosine used in concert with ischemic preconditioning on postischemic functional recovery and infarct size reduction in the rabbit heart and to compare adenosine-enhanced ischemic preconditioning with ischemic preconditioning and magnesium-supplemented potassium cardioplegia. METHODS: New Zealand White rabbits (n = 36) were used for Langendorff perfusion. Control hearts were perfused at 37 degrees C for 180 minutes; global ischemic hearts received 30 minutes of global ischemia and 120 minutes of reperfusion; magnesium-supplemented potassium cardioplegic hearts received cardioplegia 5 minutes before global ischemia; ischemic preconditioned hearts received 5 minutes of zero-flow global ischemia and 5 minutes of reperfusion before global ischemia; adenosine-enhanced ischemic preconditioned hearts received a bolus injection of adenosine just before the preconditioning. To separate the effects of adenosine from adenosine-enhanced ischemic preconditioning, a control group received a bolus injection of adenosine 10 minutes before global ischemia. RESULTS: Infarct volume in global ischemic hearts was 32.9% +/- 5.1% and 1.03% +/- 0.3% in control hearts. The infarct volume decreased (10.23% +/- 2.6% and 7.0% +/- 1.6%, respectively; p < 0.001 versus global ischemia) in the ischemic preconditioned group and control group, but this did not enhance postischemic functional recovery. Magnesium-supplemented potassium cardioplegia and adenosine-enhanced ischemic preconditioning significantly decreased infarct volume (2.9% +/- 0.8% and 2.8% +/- 0.55%, respectively; p < 0.001 versus global ischemia, p = 0.02 versus ischemic preconditioning and p = 0.05 versus control group) and significantly enhanced postischemic functional recovery. CONCLUSIONS: Adenosine-enhanced ischemic preconditioning is superior to ischemic preconditioning and provides equal protection to that afforded by magnesium-supplemented potassium cardioplegia.  相似文献   

2.
BACKGROUND: Recently we have reported a novel myo-protective protocol "adenosine-enhanced ischemic preconditioning" (APC), which extends and amends the protection afforded by ischemic preconditioning (IPC) by both reducing myocardial infarct size and enhancing postischemic functional recovery in the mature rabbit heart. However, the efficacy of APC in the senescent myocardium was unknown. METHODS: The efficacy of APC was investigated in senescent rabbit hearts and compared with magnesium-supplemented potassium cardioplegia (K/Mg) and IPC. Global ischemia (GI) hearts were subjected to 30 minutes of global ischemia and 120 minutes of reperfusion. Ischemic preconditioning hearts received 5 minutes of global ischemia and 5 minutes of reperfusion before global ischemia. Magnesium-supplemented potassium cardioplegia hearts received cardioplegia just before global ischemia. Adenosine-enhanced ischemic preconditioning hearts received a bolus injection of adenosine in concert with IPC. To separate the effects of adenosine from that of APC, a control group (ADO) received a bolus injection of adenosine 10 minutes before global ischemia. RESULTS: Infarct size was significantly decreased to 18.9%+/-2.7% with IPC (p<0.05 versus GI); 17.0%+/-1.0% with ADO (p<0.05 versus GI); 7.7%+/-1.3% with K/Mg (p<0.05 versus GI, IPC, and ADO); and 2.1%+/-0.6% with APC (p<0.05 versus GI, IPC, ADO, and K/Mg; not significant versus control). Only APC and K/Mg significantly enhanced postischemic functional recovery (not significant versus control). CONCLUSIONS: Adenosine-enhanced ischemic preconditioning provides similar protection to K/Mg cardioplegia, significantly enhancing postischemic functional recovery and decreasing infarct size in the senescent myocardium.  相似文献   

3.
A high glycogen level may be beneficial to the ischemic heart by providing glycolytic ATP or detrimental by increasing intracellular lactate and protons. To determine the effect of high glycogen on the ischemic myocardium, the glycogen content of Langendorff-perfused rat hearts was either depleted or elevated before 32 minutes of low-flow (0.5 mL/min) ischemia with Krebs-Henseleit buffer with or without 11 mmol/L glucose, followed by 32 minutes of reperfusion with buffer containing 11 mmol/L glucose. 31P nuclear magnetic resonance spectra were acquired sequentially throughout. Further experiments involved early reperfusion or the addition of HOE 694, a Na+-H+ exchange inhibitor, during reperfusion. When glucose was supplied throughout ischemia, no ischemic contracture occurred, and postischemic recovery of contractile function was highest, at 88% of preischemic function. In the absence of glucose, normal-glycogen hearts underwent ischemic contracture at 5 minutes, had an end-ischemic pH of 6.87, and recovered to 54%, whereas in high-glycogen hearts, contracture was delayed to 13 minutes, the end-ischemic pH was 6.61, and functional recovery decreased to 13%. Contracture onset coincided with the decrease in glycolysis, which occurred as glycogen became fully depleted. Functional recovery in the high-glycogen hearts increased to 89% when reperfused before contracture and to 56% when reperfused in the presence of HOE 694. Thus, during brief ischemia in the high-glycogen hearts, ischemic glycogen depletion and contracture were avoided, and the hearts were protected from injury. In contrast, during prolonged ischemia in the high-glycogen hearts, glycogen became fully depleted, and myocardial injury occurred; the injury was exacerbated by the lower ischemia pH in these hearts, leading to increased Na+-H+ exchange during reperfusion. The contradictory findings of past studies concerning the effect of high glycogen on the ischemic myocardium may thus be due to differences in the extent of glycogen depletion during ischemia.  相似文献   

4.
BACKGROUND: Adenosine has been reported to mediate the necrosis-limiting effects of ischemic preconditioning; however, it is unclear how this mediation occurs. The present study was undertaken to test the hypothesis that ischemic preconditioning increases 5'-nucleotidase activity and adenosine release during sustained ischemia and subsequent reperfusion. METHODS AND RESULTS: After thoracotomy, the left anterior descending coronary artery was cannulated and perfused with blood redirected from the left carotid artery in 32 dogs. Ischemic preconditioning was produced by four cycles in which the coronary artery was occluded and then reperfused for 5 minutes each. After the last cycle of ischemia and reperfusion, the coronary artery was occluded for 40 minutes. This was followed by 120 minutes of reperfusion. In the control group, the coronary artery was occluded for 40 minutes and reperfused for 120 minutes without ischemic preconditioning. The plasma adenosine concentration was measured and blood gases were analyzed in coronary arterial and venous blood samples taken during 120 minutes of reperfusion. Myocardial 5'-nucleotidase activity was measured before and at 40 minutes of sustained ischemia with and without ischemic preconditioning. The adenosine concentration in coronary venous blood during reperfusion was significantly higher in preconditioned hearts than in the control hearts: 1 minute after the onset of reperfusion, 546 +/- 57 versus 244 +/- 41 pmol/ml; 10 minutes after, 308 +/- 30 versus 114 +/- 14 pmol/ml; 30 minutes after, 175 +/- 24 versus 82 +/- 16 pmol/ml, respectively (p < 0.01). Ectosolic and cytosolic 5'-nucleotidase activities increased in both endocardial and epicardial myocardium in the ischemia-preconditioned hearts. Furthermore, 40 minutes of ischemia increased 5'-nucleotidase activity in ischemia-preconditioned hearts more than in control hearts. CONCLUSIONS: Ischemic preconditioning increases adenosine release and 5'-nucleotidase activity during sustained ischemia and subsequent reperfusion.  相似文献   

5.
OBJECTIVES: The aim of this study was to compare the cardioprotective effects of preconditioning in hearts from streptozotocin-induced diabetic rats with its effects in normal rat hearts. BACKGROUND: The protective effect of ischemic preconditioning against myocardial ischemia may come from improved energy balance. However, it is not known whether preconditioning can also afford protection to diabetic hearts. METHODS: Isolated perfused rat hearts were either subjected (preconditioned group) or not subjected (control group) to preconditioning before 30 min of sustained ischemia and 30 min of reperfusion. Preconditioning was achieved with two cycles of 5 min of ischemia followed by 5 min of reperfusion. RESULTS: In the preconditioned groups of both normal and diabetic rats, left ventricular developed pressure, high energy phosphates, mitochondrial adenosine triphosphatase and adenine nucleotide translocase activities were significantly preserved after ischemia-reperfusion; cumulative creatine kinase release was smaller during reperfusion; and myocardial lactate content was significantly lower after sustained ischemia. However, cumulative creatine kinase release was less in the preconditioned group of diabetic rats than in the preconditioned group of normal rats. Under ischemic conditions, more glycolytic metabolites were produced in the diabetic rats (control group) than in the normal rats, and preconditioning inhibited these metabolic changes to a similar extent in both groups. CONCLUSIONS: The present study demonstrates that in both normal and diabetic rats, preservation of mitochondrial oxidative phosphorylation and inhibition of glycolysis during ischemia can contribute to preconditioning-induced cardioprotection. Furthermore, our data suggest that diabetic myocardium may benefit more from preconditioning than normal myocardium, possibly as a result of the reduced production of glycolytic metabolites during sustained ischemia and the concomitant attenuation of intracellular acidosis.  相似文献   

6.
BACKGROUND: Ischemic preconditioning (IPC) attenuates acidosis during prolonged ischemia and improves contractile and metabolic parameters during subsequent reperfusion. Glycogen depletion induced by IPC is proposed as a potential mechanism. METHODS AND RESULTS: We studied the influence of manipulations of preischemic glycogen levels (Pre-G, micromol glucose/g wet wt) on contractile and metabolic (via 31P-nuclear magnetic resonance) parameters during 30 minutes of ischemia and recovery in four groups of isovolumic rat hearts: First, control (Con, n=18, mean Pre-G, 21.5+/-0.8); second, after two 5-minute IPC periods (IPC, n=12, Pre-G, 11.3+/-0.7); third, a control group in which Pre-G was depleted by glucose-free, acetate perfusion (Con-LowG, n=9, Pre-G, 7.9+/-1.2); and fourth, an IPC group in which Pre-G was raised by glucose and lactate perfusion such that Pre-G was similar to Con (IPC-HiG, n=11, Pre-G, 20+/-1.4). Manipulation of Pre-G significantly altered the pH fall during 30 minutes of ischemia (Con, 5.76+/-.03, Con-LowG, 6.26+/-.07; IPC-HiG, 5.91+/-.02, IPC, 6.05+/-.09). IPC-HiG hearts had significantly worse metabolic recovery (PCr, 70+/-7 versus 91+/-3% initial; IPC-HiG versus IPC, P<.05) and contractile recovery (end-diastolic pressure, 52+/-5 versus 29+/-5 mm Hg, P<.05) than IPC hearts but better recovery than Con (%PCr, 56+/-6% and end-diastolic pressure, 72+/-6 mm Hg). An ischemic rise in intracellular magnesium occurred and was atttenuated in preconditioned hearts. CONCLUSIONS: Pre-G levels before ischemia influence but are not the sole determinants of the extent of acidosis during prolonged ischemia and of metabolic and contractile recovery during reperfusion in control and preconditioned hearts.  相似文献   

7.
ATP-sensitive potassium channel (KATP) openers directly protect ischemic myocardium, which may make them useful for treating patients undergoing cardiopulmonary bypass, but whether high-potassium-containing cardioplegic solutions would inhibit their protective effects is not clear. We determined whether additional protection greater than that provided by cardioplegia could be found for KATP openers. We studied the effect of 10 microM cromakalim or BMS-180448 pretreatment (10 min before cardioplegia) on severity of ischemia in isolated rat hearts given normothermic or cold St. Thomas' cardioplegic solution (16 mM K+). After cardioplegic arrest, the hearts were subjected to 30-min (normothermic) or 150-min (hypothermic) global ischemia, each followed by 30-min reperfusion. The cardioplegic solutions significantly protected the hearts, as measured by increased time to onset of contracture, enhanced recovery of function, and reduced lactate dehydrogenase (LDH) release. Cromakalim and BMS-180448 both further significantly increased time to contracture in both normothermic and hypothermic arrested hearts; this was accompanied by enhanced recovery of reperfusion contractile function and reduced cumulative LDH release. This additional protective effect of the K ATP openers was abolished by glyburide. Because administration of the K ATP openers only with the cardioplegic solution (1 min before global ischemia) was not efficacious, >1-min pretreatment apparently is necessary. K ATP openers provide additional protection to that afforded by cold or normothermic potassium cardioplegia in rat heart, although the timing of treatment may be crucial.  相似文献   

8.
OBJECTIVE: The objective was to evaluate the effect of left ventricular function on cyanotic myocardium after ischemia-reperfusion and to determine the effect of cyanosis on the myocardial antioxidant system. METHODS: Cyanotic hearts (cyanotic group) were obtained from rats housed in a hypoxic chamber (10% oxygen) for 2 weeks and control hearts (control group) from rats maintained in ambient air. Isolated, crystalloid perfused working hearts were subjected to 15 minutes of global normothermic ischemia and 20 minutes of reperfusion, and functional recovery was evaluated in the two groups. Myocardial superoxide dismutase, glutathione peroxidase, glutathione reductase activity, and reduced glutathione content were measured separately in the cytoplasm and mitochondria at the end of the preischemic, ischemic, and reperfusion periods. RESULTS: Mean cardiac output/left ventricular weight was not significantly different between the two groups. Percent recovery of cardiac output was significantly lower in the cyanotic group than in the control group (56.1% +/- 5.7% vs 73.0% +/- 3.1%, p = 0.001). Mitochondrial superoxide dismutase, mitochondrial and cytosolic glutathione reductase activity, and cytosolic reduced glutathione were significantly lower in the cyanotic group than in the control group at end-ischemia (superoxide dismutase, 3.7 +/- 1.3 vs 5.9 +/- 1.5 units/mg protein, p = 0.012; mitochondrial glutathione reductase, 43.7 +/- 14.0 vs 71.0 +/- 30.3 munits/mg protein, p = 0.039; cytosolic glutathione reductase, 13.7 +/- 2.0 vs 23.2 +/- 4.2 munits/mg protein, p < 0.001; and reduced glutathione, 0.69 +/- 0.10 vs 0.91 +/- 0.24 microgram/mg protein, p = 0.037). CONCLUSIONS: Cyanosis impairs postischemic functional recovery and depresses myocardial antioxidant reserve during ischemia. Reduced antioxidant reserve at end-ischemia may result in impaired postischemic functional recovery of cyanotic myocardium.  相似文献   

9.
BACKGROUND: Patients with heart failure show a very high incidence of arrhythmias and sudden death that is often preceded by ischemia; however, data on electrophysiological changes during ischemia in failing myocardium are sparse. We studied electrical uncoupling during ischemia in normal and failing myocardium. METHODS AND RESULTS: Tissue resistance, intracellular Ca2+ concentration (Indo-1 fluorescence ratio), and mechanical activity were simultaneously determined in arterially perfused right ventricular papillary muscles from 11 normal and 15 failing rabbits. Heart failure was induced by combined volume and pressure overload. Before sustained ischemia, muscles were subjected to control perfusion (non-PC) or ischemic preconditioning (PC). The onset of uncoupling during ischemia was equal in non-PC normal (13.6+/-0.9 minutes of ischemia) and non-PC failing hearts (13.3+/-0.7 minutes of ischemia). PC postponed uncoupling in normal hearts by 10 minutes. In failing hearts, however, PC caused a large variability in the onset of uncoupling during ischemia (mean, 12.2+/-2.1; range, 5 to 22 minutes of ischemia). The duration of uncoupling process was prolonged in failing hearts (12.9+/-0.9 minutes) compared with normal hearts (7.8+/-0.4 minutes). The degree of heart failure and relative heart weight of the failing hearts significantly correlated with the earlier uncoupling after PC and the duration of uncoupling. In every experiment, the start of Ca2+ rise and contracture preceded uncoupling during ischemia. CONCLUSIONS: The duration of the process of ischemia-induced electrical uncoupling in failing hearts is prolonged compared with that in normal hearts. Ischemic PC has detrimental effects in severely failing papillary muscles because it advances the moment of irreversible ischemic damage.  相似文献   

10.
Protein kinase C (PKC) has been implicated in the preconditioning-induced cardiac protection in ischemic/reperfused myocardium. We studied the effect of PKC inhibition with calphostin C (25, 50, 100, 200, 400, and 800 nM), a potent and specific inhibitor of PKC, in isolated working nonpreconditioned and preconditioned ischemic/reperfused hearts. In the nonpreconditioned groups, all hearts underwent 30 min of normothermic global ischemia followed by 30 min of reperfusion. In the preconditioned groups, hearts were subjected to four cycles of ischemic preconditioning by using 5 min of ischemia followed by 10 min reperfusion, before the induction of 30 min ischemia and reperfusion. At low concentrations of calphostin C (25, 50, and 100 nM), the PKC inhibitor had no effect on the incidence or arrhythmias or postischemic cardiac function in the nonpreconditioned ischemic/reperfused groups. With 200 and 400 nM of calphostin C, a significant increase in postischemic function and a reduction in the incidence of arrhythmias were observed in the nonpreconditioned ischemic/reperfused groups. Increasing the concentration of calphostin C to 800 NM, the recovery of postischemic cardiac function was similar to that of the drug-free control group. In preconditioned hearts, lower concentrations (< 100 nM) of calphostin C did not change the response of the myocardium to ischemia and reperfusion in comparison to the preconditioned drug-free myocardium. Two hundred and 400 nM of the PKC inhibitor further reduced the incidence of ventricular fibrillation (VF) from the preconditioned drug-free value of 50% to 0 (p < 0.05) and 0 (p < 0.05), respectively, indicating that the combination of the two, preconditioning and calphostin C, affords significant additional protection. Increasing the concentration of calphostin C to 800 nM blocked the cardioprotective effect of preconditioning (100% incidence of VF). The recovery of cardiac function was similarly improved at calphostin C doses of 200 and 400 nM and was reduced at 800 nM (p < 0.05). With 200 and 400 nM of calphostin C, both cytosolic and particulate PKC activity were reduced by approximately 40 and 60%, respectively, in both preconditioned and preconditioned/ischemic/reperfused hearts. The highest concentration of calphostin C (800 nM) resulted in almost a complete inhibition of cytosolic (100%) and particulate (85%) PKC activity correlated with the abolition of preconditioning-induced cardiac protection. In conclusion, calphostin C protects the ischemic myocardium obtained from intact animals, provides significant additional protection to preconditioning at moderate doses, and blocks the protective effect of preconditioning at high concentrations. The dual effects of calphostin C appear to be strictly dose and "enzyme inhibition" related.  相似文献   

11.
Although hypothermia and cardioplegic cardiac arrest provide effective protection during cardiac surgery, ischemia of long duration, poor preoperative myocardial function, and ventricular hypertrophy may lead to heterogeneous delivery of cardioplegic solutions, incomplete protection, and impaired postischemic recovery. Calcium antagonists are potent cardioprotective agents, but their efficacy in the presence of cold cardioplegia is still controversial, especially in heart failure, since it is often believed that failing hearts are more sensitive to their negative inotropic and chronotropic actions. However, recent data have demonstrated that the benzothiazepine-like calcium antagonists diltiazem and clentiazem, in selected dose ranges, elicit significant cardioprotection independently of intrinsic cardiodepression, thus lending support to their use in cardioprotective maneuvers involving the failing heart. We therefore evaluated the cardioprotective interaction of diltiazem, clentiazem, and cold cardioplegia in both normal and failing ischemic hearts. Hearts were excised from 200- to 225-day-old cardiomyopathic hamsters (CMHs) of the UM-X7.1 line and age-matched normal healthy controls. Ex vivo perfusion was performed at a constant pressure (140 cmH2O; 1 cmH2O = 98.1 Pa) according to the method of Langendorff. Heart rate, left ventricular developed pressure (LVDP), and coronary flow were monitored throughout the study. Global ischemia was produced for 90 min by shutting down the perfusate flow, followed by reperfusion for 30 min. Normal and failing CMH hearts were either untreated (control) or perfused at the onset of global ischemia with one of the following combinations: cold cardioplegia alone (St. Thomas' Hospital cardioplegic solution, 4 degrees C, infused for 2 min), cold cardioplegia + 10 nM diltiazem, or cold cardioplegia + 10 nM clentiazem. The cardiac and coronary dilator properties of 10 nM diltiazem and 10 nM clentiazem alone were investigated in separate groups of isolated preparations. Failing CMH hearts had lower basal LVDP (42 +/- 2 vs. 77 +/- 2 mmHg (1 mmHg = 133.3 Pa) for normal hearts, p < 0.05), while coronary flow was only slightly reduced (5.6 +/- 0.2 vs. 6.2 +/- 0.2 mL/min for normal hearts). Following 90 min global ischemia, coronary flow was increased in both groups, but the peak hyperemic response declined only in failing CMH hearts (+50 +/- 17 vs. +82 +/- 17% in normal hearts). In normal hearts, LVDP virtually recovered within 5 min of reperfusion but steadily decreased thereafter (-37 +/- 4% at 30 min). In contrast, in failing CMH hearts, LVDP significantly decreased early during reperfusion but improved over time (-19 +/- 7% at 30 min). In normal hearts, the addition of diltiazem or clentiazem to cold cardioplegic solutions resulted in improved postischemic contractile function for the duration of reperfusion (85 +/- 4% vs. only 71 +/- 6% for cardioplegia, p < 0.05). The post-ischemic increase in coronary flow was similar in all groups. In failing CMH hearts, the addition of diltiazem or clentiazem afforded no significant contractile benefit at reperfusion. In nonischemic normal hearts, infusion of diltiazem or clentiazem (10 nM) alone increased coronary flow (+6 +/- 1% for diltiazem and +24 +/- 3% for clentiazem) without significant negative inotropic or chronotropic effects. In nonischemic failing CMH hearts, infusion of diltiazem or clentiazem did not elicit cardiodepression. In contrast their coronary dilator actions reverted to vasoconstriction (diltiazem) or were significantly attenuated (clentiazem). From these experiments we can conclude that, compared with the normal heart, the failing CMH heart adapted differently to global ischemia.  相似文献   

12.
It is now well established that pre-treatment with sublethal ischemia, followed by reperfusion, will delay myocardial necrosis during a later sustained ischemic episode, termed ischemic preconditioning (IPC); this has been confirmed experimentally and clinically. However, the effects for the senescent heart differ from those of the mature heart at both functional and cellular levels which have not yet been determined. Comparisons were made between aged (> 135 weeks, n = 18) and mature (15 approximately 20 weeks, n = 8) rabbit hearts which underwent 30 min. normothermic global ischemia with 120 min reperfusion in a buffer-perfused isolated, paced heart model, and the effects of IPC on post-ischemic functional recovery and infarct size were investigated. Ischemic preconditioned hearts (n = 6) were subjected to one cycle of 5 min. global ischemia and 5 min. reperfusion prior to global ischemia. Global ischemic hearts (n = 6) were subjected to 30 min. global ischemia without intervention. Control hearts (n = 6) were subjected to perfusion without ischemia. Post-ischemic functional recovery was better in the ischemic preconditioned hearts than in the global ischemic hearts in both aged and mature hearts. However, in the aged hearts, post-ischemic functional recovery was slightly reduced compared to that of the mature hearts, and only the coronary flow was well-preserved. In the mature hearts, myocardial infarction in the ischemic preconditioned hearts (14.9 +/- 1.3%) and in the control hearts (1.0 +/- 0.3%) was significantly decreased (p < 0.01) compared to that of the global ischemic hearts (32.9 +/- 5.1%). In the aged hearts, myocardial infarction in the ischemic preconditioned hearts (18.9 +/- 2.7%) and in the control hearts (1.1 +/- 0.6%) was significantly decreased (p < 0.001) compared to that of the global ischemic hearts (37.6 +/- 3.7%). The relationship between infarct size and post-ischemic functional recovery of left ventricularpeak developed pressure (LVDP) was linear and the correlation negative, with r = -0.934 (p < 0.001) and -0.875 (p < 0.001) for mature and aged hearts respectively. The data suggest that, in the senescent myocardium, the cellular pathways involved ischemic preconditioning responses that were post-ischemic, and that functional recovery was worse as compared to that of the mature myocardium. Furthermore, the effects of post-ischemic functional recovery became consistently weaker during the control period of 120 min. reperfusion after a prolonged ischemic insult in a buffer perfused isolated rabbit model. However, the effects of infarct size limitation were well-preserved in both senescent and mature myocardia.  相似文献   

13.
OBJECTIVE: Microdialysis and 31P-NMR spectroscopy were used to test opposing hypotheses that ischemic preconditioning inhibits adenine nucleotide degradation and purine efflux, or that preconditioning activates cardiovascular adenosine formation to provide enhanced cardioprotection. METHODS: 31P-NMR spectra and matching interstitial fluid (ISF) or venous effluent samples were obtained from Langendorff perfused rat hearts. Control hearts (n = 9) underwent 30 min of global normothermic ischemia and 30 min reperfusion. Preconditioned hearts (n = 6) were subjected to a 5 min ischemic episode and 10 min reflow prior to 30 min ischemia and 30 min reperfusion. Effects of repetitive ischemia-reperfusion (3 x 5 min ischemic episodes) on adenosine levels and energy metabolism were also assessed (n = 8). RESULTS: Preconditioning improved post-ischemic recovery of heart rate x left ventricular developed pressure (71 +/- 5 vs 43 +/- 8%, P < 0.05) and end-diastolic pressure (14 +/- 3 vs 29 +/- 4 mmHg, P < 0.05) compared with control hearts, respectively. Preconditioning did not alter intracellular ATP, phosphocreatine (PCr), inorganic phosphate (Pi), H+ or free Mg2+ during global ischemia, but improved recoveries of PCr, Pi, and delta GATP on reperfusion. ISF adenosine increased more than 20-fold during 30 min ischemia. The 5 min preconditioning episode increased ISF adenosine 3-fold, and reduced ISF adenosine and inosine during subsequent prolonged ischemia by up to 75%. Venous purine levels during reperfusion were also reduced by preconditioning. Accumulation of adenosine in ISF and venous effluent during repetitive ischemia was progressively reduced despite comparable changes in substrate for adenosine formation via 5'-nucleotidase, (5'-AMP), and in allosteric modulators of this enzyme (Mg2+, H+, Pi, ADP, ATP). CONCLUSIONS: (i) Ischemic preconditioning reduces interstitial and vascular adenosine levels during ischemia-reperfusion, (ii) reduced ISF adenosine during ischemia is not due to reduced ischemic depletion of adenine nucleotides in preconditioned rat hearts, (iii) preconditioning may inhibit adenosine formation via 5'-nucleotidase in ischemic rat hearts, and (iv) improved functional recovery with preconditioning is unrelated to metabolic/bioenergetic changes during the ischemic insult, but may be related to improved post-ischemic recovery of [Pi] and delta GATP in this model.  相似文献   

14.
OBJECTIVES: Fructose-1,6-diphosphate is a glycolytic intermediate that has been shown experimentally to cross the cell membrane and lead to increased glycolytic flux. Because glycolysis is an important energy source for myocardium during early reperfusion, we sought to determine the effects of fructose-1,6-diphosphate on recovery of postischemic contractile function. METHODS: Langendorff-perfused rabbit hearts were infused with fructose-1,6-diphosphate (5 and 10 mmol/L, n = 5 per group) in a nonischemic model. In a second group of hearts subjected to 35 minutes of ischemia at 37 degrees C followed by reperfusion (n = 6 per group), a 5 mmol/L concentration of fructose-1,6-diphosphate was infused during the first 30 minutes of reperfusion. We measured contractile function, glucose uptake, lactate production, and adenosine triphosphate and phosphocreatine levels by phosphorus 31-nuclear magnetic resonance spectroscopy. RESULTS: In the nonischemic hearts, fructose-1,6-diphosphate resulted in a dose-dependent increase in glucose uptake, adenosine triphosphate, phosphocreatine, and inorganic phosphate levels. During the infusion of fructose-1,6-diphosphate, developed pressure and extracellular calcium levels decreased. Developed pressure was restored to near control values by normalizing extracellular calcium. In the ischemia/reperfusion model, after 60 minutes of reperfusion the hearts that received fructose-1,6-diphosphate during the first 30 minutes of reperfusion had higher developed pressures (83 +/- 2 vs 70 +/- 4 mm Hg, p < 0.05), lower diastolic pressures (7 +/- 1 vs 12 +/- 2 mm Hg, p < 0.05), and higher phosphocreatine levels than control untreated hearts. Glucose uptake was also greater after ischemia in the hearts treated with fructose-1,6-diphosphate. CONCLUSIONS: We conclude that fructose-1,6-diphosphate, when given during early reperfusion, significantly improves recovery of both diastolic and systolic function in association with increased glucose uptake and higher phosphocreatine levels during reperfusion.  相似文献   

15.
BACKGROUND: The protective effects of myocardial preconditioning may occur by way of multiple mechanisms, with G-protein-mediated protein kinase C (PKC) translocation as a final common pathway. In this study we investigate the pharmacologic induction of preconditioning, by PKC translocation, using PKC agonists/antagonists to reveal its effects on contractile function after myocardial ischemia. METHODS: Langendorff-perfused rabbit hearts received: (1) control; (2) dimethyl sulfoxide (vehicle); (3) acetylcholine (0.55 mmol/L; PKC agonist); (4) 1,2-s,n-dioctanoylglycerol (DOG; 22 mmol/L; PKC agonist); (5) chelerythrine (0.8 mmol/L; PKC antagonist); or (6) DOG-chelerythrine followed by a 2-hour ischemic period, using modified St. Thomas cardioplegia and a 45-minute reperfusion period. The period of ischemia was chosen so as to allow for improvement by appropriate agonists. To observe metabolic changes, tissue nucleotides and nucleosides were measured. Membrane and cytosolic fractions of PKC were determined by an anti-PKC antibody directed against the PKC delta isozyme. Lactate levels and myocardial pH were measured. RESULTS: The PKC agonists DOG and acetylcholine showed the greatest recovery of developed pressure (68% +/- 2%, 60% +/- 9%, respectively). Although pH, lactate, and nucleotide levels were similar between groups at all times, myocyte PKC translocation demonstrated 25% of PKC delta isoforms on cell membrane sites during baseline, which shifted to 67% delta 17% with unprotected ischemia. DOG mimicked this shift with 58% delta 12% of PKC delta isoforms on membranes, which was also blocked by chelerythrine to 35% +/- 7%. CONCLUSIONS: These data demonstrate that PKC translocation results in improved postischemic function, not by alteration of energetics or metabolism, and deserves further investigation.  相似文献   

16.
BACKGROUND: Although both clinical and animal studies have shown that ischemic tolerance is reduced in the senescent myocardium, it has not been clarified when myocardium becomes more vulnerable to ischemia. Preconditioning protects the hearts of young adult animals of various species, but its effects are not identical in human studies. We investigated whether ischemic tolerance and the effect of preconditioning decreased in isolated hearts of middle-aged rats. METHODS AND RESULTS: The hearts of young adult rats (12 weeks old: group Y, n = 44) and middle-aged rats (50 weeks old: group M, n = 44) were subjected to global ischemia for 15, 20, or 25 minutes followed by reperfusion. Hearts were also subjected to preconditioning and then to 20 (group Y, n = 22) or 15 (group M, n = 22) minutes of ischemia followed by reperfusion. Left ventricular developed pressure (LVDP) was decreased by 40% to 60%, and the level of ATP was decreased by 60% to 70% in group M compared with group Y. Preconditioning increased LVDP (% LVDP, 40.5% to 72.4%) and levels of high-energy phosphates (ATP, 11.8 to 14.1; creatine phosphate, 17.0 to 23.1 mumol/g dry wt) and reduced left ventricular end-diastolic pressure (LVEDP, 32.8 to 10.3 mm Hg), creatine kinase release (257 to 132 U/g dry wt), and ryanodine-sensitive sarcoplasmic reticulum Ca2+ release after ischemia in group Y. Preconditioning exerted opposite effects in group M (% LVDP, 45.9% to 15.8%; LVEDP, 21.0 to 28.5 mm Hg; ATP, 14.1 to 8.5 mumol/g dry wt; and CK release, 176 to 332 U/g dry wt). Preconditioning was associated with increases in the incidence of reperfusion-induced ventricular fibrillation (0% to 62.5%) and the rate of sarcoplasmic reticulum Ca2+ release in group M. CONCLUSIONS: These results indicate that hearts became more vulnerable to ischemia with age and that the beneficial effects of preconditioning were reversed in middle-aged rat hearts.  相似文献   

17.
OBJECTIVE: Unmodified reperfusion without cardioplegia in minimally invasive direct coronary artery bypass grafting procedures causes endothelial dysfunction that may predispose to polymorphonuclear neutrophil-mediated myocardial injury. This study tested the hypothesis that ischemic preconditioning in a minimally invasive direct coronary artery bypass grafting model attenuates postischemic endothelial dysfunction in coronary vessels. METHODS: In anesthetized dogs, the left anterior descending coronary artery was occluded for 30 minutes and reperfused for 3 hours without ischemic preconditioning (no-ischemic preconditioning; n = 7); in 7 dogs, the left anterior descending occlusion was preceded by 5 minutes occlusion followed by 5 minutes of reperfusion. Relaxation responses to stimulators of nitric oxide synthase were used to evaluate endothelial function in arteries from the ischemic-reperfused (left anterior descending) and nonischemic (left circumflex coronary artery) zones. RESULTS: Stimulated endothelial-dependent relaxation of epicardial left anterior descending artery to incremental concentrations of acetylcholine in the no-ischemic preconditioning animals was shifted to the right, and maximal relaxation was attenuated compared with the nonischemic left circumflex coronary artery (117% +/- 4% vs 138% +/- 5%). In contrast, acetylcholine-induced maximal relaxation was comparable in the left anterior descending artery versus left circumflex coronary artery in the ischemic preconditioning group (130% +/- 6% vs 135% +/- 5%). In 150- to 200- microm left anterior descending microvessels, 50% relaxation occurred with a lower concentration (log[M]) of acetylcholine in ischemic preconditioning versus no-ischemic preconditioning (-8.0 +/- 0.4 vs -7.0 +/- 0.1) with no group differences in smooth muscle relaxation to sodium nitroprusside, suggesting endothelial-specific damage. Adherence of fluorescent labeled polymorphonuclear neutrophils to epicardial coronary artery endothelium, used as an index of basal (unstimulated) anti-polymorphonuclear neutrophil function, was significantly attenuated by ischemic preconditioning versus no-ischemic preconditioning (293 +/- 25 polymorphonuclear neutrophils/mm2 vs 528 +/- 29 polymorphonuclear neutrophils/mm2). CONCLUSION: In this minimally invasive direct coronary artery bypass grafting model, both agonist-stimulated and basal postischemic endothelial dysfunction were attenuated by ischemic preconditioning.  相似文献   

18.
BACKGROUND: We have previously demonstrated that ischemic preconditioning (PC) does not protect when oxygen deprivation is accompanied by a high level of perfusion (hypoxia). Since clinical ischemia can vary from mild to severe, we wished to determine whether PC could protect against injury arising from low-flow ischemia. METHODS AND RESULTS: Functional recovery after 30 minutes of reperfusion was assessed in isolated, blood-perfused rat hearts (n=6 per group) subjected to (A) 30 minutes of zero-flow ischemia, (B) 30 minutes of zero-flow ischemia preceded by 3xPC (PC=5 minutes of ischemia+5 minutes of reperfusion), (C) 90 minutes of low-flow ischemia at 10% of baseline coronary flow (0.31+/-0.02 mL/min per gram wet wt), (D) 90 minutes of low-flow ischemia at 10% of baseline coronary flow (0.29+/-0.02 mL/min per gram wet wt) preceded by 3xPC. PC significantly protected against injury resulting from zero-flow ischemia (developed pressure recovered to 67+/-6% versus 31+/-12% in B and A, respectively; P<.05) but not resulting from low-flow ischemia (recovery of developed pressure was 40+/-8% versus 37+/-7% in C and D, respectively). Protein kinase C (PKC) is widely considered to be involved in the mechanism of PC such that prior activation and translocation of PKC by the PC protocol allows phosphorylation of the end-effector protein early during the subsequent ischemic insult, before loss of adenosine triphosphate occurs. However, because adenosine triphosphate content falls slowly during low-flow ischemia, PKC may be activated and translocated early enough to be active during this insult. If so, inhibition of PKC should decrease functional recovery in the control group. However, functional recovery in control groups was not decreased in the presence of the PKC inhibitor polymyxin B (50+/-6%), suggesting that if activation of PKC occurred during low-flow ischemia, it was not protective. CONCLUSIONS: PC does not protect against contractile dysfunction in the rat when a low level (10% of baseline flow) of ischemic perfusion remains during the prolonged insult.  相似文献   

19.
OBJECTIVE: Encouraging results on myocardial preconditioning in experimental models of infarction, stunning or prolonged ischemia raise the question whether preconditioning techniques may enhance conventional cardioplegic protection used for routine coronary surgery. METHODS: A prospective clinical trial was conducted to investigate the effect of additional ischemic normothermic preconditioning prior to cardioplegic arrest applying cold blood cardioplegia in patients scheduled for routine coronary surgery (3 vessel disease, left ventricular ejection fraction > 50%). Two cross clamp periods of 5 min with the hearts beating in sinus rhythm were applied followed by 10 min of reperfusion, each (n = 7, group I). Inducing moderate hypothermia cold blood cardioplegia was delivered antegradely. In control groups, cold intermittent blood cardioplegia (n = 7, group II) was used alone. Coronary sinus effluents were analyzed for release of creatine kinase (CK), CK-MB, lactate, and troponin T at 1, 3, 6, 9, and 12 h. In addition, postoperative catecholamine requirements were monitored. RESULTS: The procedure was tolerated well, and no perioperative myocardial infarction in any of the groups studied occurred. Concentrations of lactate tended to be higher in group I, but this difference was not significant. In addition, no significant differences for concentrations of CK, CK-MB, and troponin T were found. Following ischemic preconditioning an increased dosage of dopamine was required within the first 12 h postoperatively (group I: 2.63 +/- 1.44 microg/kg/min, group II: 0.89 +/- 1.06 microg/kg/min). CONCLUSIONS: Combining ischemic preconditioning and cardioplegic protection with cold blood cardioplegia does not appear to ameliorate myocardial protection when compared to cardioplegic protection applying cold blood cardioplegia alone. Inversely, contractile function seemed to be impaired when applying this protocol of ischemic preconditioning.  相似文献   

20.
BACKGROUND: Nonischemic myocardial dysfunction in patients with diabetes mellitus appears to be attenuated with long-term L-carnitine therapy. The effect of acute L-carnitine supplementation on rat hearts from euglycemic and diabetic animals subjected to ischemia and reperfusion is investigated in this study. METHODS: Study rats had diabetes mellitus induced by streptozocin (65 mg/kg intraperitoneally), and control rats had injection of saline solution (n = 12 per group). About 1 month later, the hearts were suspended on a Langendorff apparatus and perfused with either standard buffered Krebs-Henseleit solution or this standard solution supplemented with L-carnitine (5 mmol/L). After stabilization, normothermic, zero-flow ischemia was instituted for 20 minutes followed by 60 minutes of reperfusion. There were four study groups (n = 6 per group): hearts that were from euglycemic rats and that were perfused with standard buffered Krebs-Henseleit solution (E-STD); hearts that were from diabetic animals and that were perfused with the same standard buffered solution (DM-STD); hearts taken from diabetic animals and perfused with L-carnitine-enriched solution (DM-CAR); and hearts taken from euglycemic rats and perfused with the enriched solution (E-CAR). RESULTS: At 60 minutes of reperfusion, left ventricular developed pressure was significantly better in hearts from both groups (diabetic and euglycemic) with carnitine supplementation (DM-CAR versus DM-STD and E-CAR versus E-STD, p < 0.01 for both, by analysis of variance). Left ventricular end-diastolic pressure was significantly lower in the DM-CAR group compared with all other groups (p < 0.01 by analysis of variance). CONCLUSIONS: These findings suggest that acute L-carnitine supplementation significantly improves the recovery of the ischemic myocardium in diabetic and euglycemic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号