首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research efforts were given towards development of low carbon high strength steels since recent past. The present study deals with the development of a low carbon high strength steel alloyed with Mn, Ni, Mo, Cu and microalloyed with Ti and Nb. The steel was subjected to three stage controlled rolling operation followed by accelerated cooling. The structure and properties of the steel at various processing conditions were evaluated. Microstructural observation reveals predominantly lath martensite along with twinned martensite structure at all processing conditions. High strength values at higher finish rolling temperatures have been obtained due to fine martensitic structure along with tiny precipitates of microalloying carbide and carbonitride. The strength value increases marginally at lower finishing temperature due to comparatively finer lath size of martensite and increased precipitation density of carbides, carbonitrides along with Cu particles. The variation in impact toughness properties at different finish rolling temperatures is found to be negligible at ambient and subambient temperatures. The formation of stable and large TiN/TiCN particles during casting have impaired the impact toughness values at ambient and at ‐40°C temperatures.  相似文献   

2.
韩荣  刘洪喜  尉文超  王毛球  时捷 《钢铁》2022,57(2):127-138
使用温成形替代热成形可以避免热成形过程中表面氧化等问题,但热成形常用22MnB5钢在高温回火后出现明显的软化现象.而通过向钢中添加Ti、V、Mo等微合金元素可以在钢中形成细小的析出相以及细化晶粒,起到提高强度的作用,从而可以解决该问题.因此,通过在22MnB5钢中添加Ti、V、Mo微合金元素,利用OM(光学显微镜)、F...  相似文献   

3.
An ultralow-carbon steel alloyed with Ni, Mn, Mo, and Cu and microalloyed with Nb and Ti was subjected to a three-stage controlled rolling operation followed by water quenching. The effect of thermomechanical processing on the microstructure, mechanical properties, and age-hardening behavior of the steel was evaluated. The precipitation behavior of Cu at different aging temperatures was studied by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The high strength values obtained in the present steel are due to the fine-lath martensite structure along with tiny precipitates of microalloying carbide and carbonitride of Ti and Nb at all finish rolling temperatures (FRTs). The increased strength value at the lower FRT is due to the finer lath width and packet size of martensite. The large TiN particles and the coarse martensite-austenite (MA) constituents impaired the impact-toughness value of the steel at subambient temperature. On aging at different temperatures, a wide variation in structure and properties has been obtained. At low aging temperatures, coherent Cu particles form and a peak strength is obtained due to the formation of fine ε-Cu precipitates. On increasing aging temperatures, the Cu particle size increases, with a simultaneous decrease in dislocation density in the matrix resulting in a continuous decrease in strength.  相似文献   

4.
An ultralow-carbon steel alloyed with Ni, Mn, Mo, and Cu and microalloyed with Nb and Ti was subjected to a three-stage controlled rolling operation followed by water quenching. The effect of thermomechanical processing on the microstructure, mechanical properties, and age-hardening behavior of the steel was evaluated. The precipitation behavior of Cu at different aging temperatures was studied by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The high strength values obtained in the present steel are due to the fine-lath martensite structure along with tiny precipitates of microalloying carbide and carbonitride of Ti and Nb at all finish rolling temperatures (FRTs). The increased strength value at the lower FRT is due to the finer lath width and packet size of martensite. The large TiN particles and the coarse martensite-austenite (MA) constituents impaired the impact-toughness value of the steel at subambient temperature. On aging at different temperatures, a wide variation in structure and properties has been obtained. At low aging temperatures, coherent Cu particles form and a peak strength is obtained due to the formation of fine ε-Cu precipitates. On increasing aging temperatures, the Cu particle size increases, with a simultaneous decrease in dislocation density in the matrix resulting in a continuous decrease in strength.  相似文献   

5.
 High chromium high carbon AISI D3 steel is used as cold-work tools and dies in industry. Microstructure of this wrought steel usually consists of chromium carbides homogenously dispersed in a ferritic or martensitic matrix. On the other hand, a eutectic network consisting of chromium carbide and austenite forms in a cast D3 steel, at the end of solidification due to the segregation of carbon and chromium. This heterogeneous microstructure gives rise to the reduced mechanical properties such as toughness, impact strength, and tensile strength. In this research, modified AISI D3 steel was developed by replacing part of Cr with Nb and Ti, in which chromium carbide was partially replaced with MC carbides. The cast samples produced by investment casting were heat treated at different conditions. The microstructures of the samples were studied by light and scanning electron microscope attached with EDS analyzer. To determine the optimized homogenizing process, the effects of homogenizing treatment on the microstructure and the morphology of carbides were also studied.  相似文献   

6.
新型马氏体耐热钢G115是我国630~650℃超超临界燃煤发电机组重要的候选材料。研究了不同调质工艺对G115棒材组织性能的影响。结果表明,采用两次调质工艺,室温拉伸和650℃高温拉伸强度均提高,冲击功提升尤为显著。随着两次调质工艺中第一次淬火温度的升高,强度和冲击功均有提升趋势。采用金相显微镜、扫面电镜观察分析了不同调质工艺的组织差异,两次调质工艺的晶粒明显细于一次调质,且回火板条组织保留更明显,碳化物形貌更细小、分布更弥散。随着两次调质工艺中第一次淬火温度的升高,晶粒变粗但均匀性更好。  相似文献   

7.
利用扫描电镜(SEM)、透射电镜(TEM)对Nb-Ti微合金化热成形钢的微观组织进行观察,采用Kahn撕裂试验对其韧性和撕裂性能进行了研究,并利用Thermo-Calc热力学软件对其析出行为和析出粒子成分进行分析计算.结果表明,含碳质量分数0.13%的热成形钢在Nb-Ti微合金化后的组织为马氏体,和传统热成形钢(22MnB5)相比其奥氏体晶粒、板条块和板条束都得到细化,并且其抗拉强度达到1500 MPa以上,撕裂强度和单位面积裂纹扩展能分别达到1878 MPa、436 kN·m-1.在950℃奥氏体化时,Nb-Ti合金元素几乎全部以析出粒子形式存在,能有效阻止奥氏体晶粒长大.另外在基体中主要存在两种析出物,一种是尺寸在100~200 nm的Ti (C,N);另一种是纳米级别的钛铌复合碳氮化物,能有效强化基体,提高强度.   相似文献   

8.
The effects of a Mo addition on both the precipitation kinetics and high-temperature strength of a Nb carbide have been investigated in the hot-rolled high-strength, low-alloy (HSLA) steels containing both Nb and Mo. These steels were fabricated by four-pass hot rolling and coiling at 650°C, 600°C, and 550°C. Microstructural analysis of the carbides has been performed using field-emission gun transmission electron microscopy (TEM) employing energy-dispersive X-ray spectroscopy (EDS). The steels containing both Nb and Mo exhibited a higher strength at high temperatures (∼600 °C) in comparison to the steel containing only Nb. The addition of Mo increased the hardenability and led to the refinement of the bainitic microstructure. The proportion of the bainitic phase increased with the increase of Mo content. The TEM observations revealed that the steels containing both Nb and Mo exhibited fine (<10 nm) and uniformly distributed metal carbide (MC)-type carbides, while the carbides were coarse and sparsely distributed in the steels containing Nb only. The EDS analysis also indicated that the fine MC carbides contain both Nb and Mo, and the ratio of Mo/Nb was higher in the finer carbides. In addition, electron diffraction analysis revealed that most of the MC carbides had one variant of the B-N relationship ((100)MC//(100)ferrite, [011]MC//[010]ferrite) with the matrix, suggesting that they were formed in the ferrite region. That is, the addition of Mo increased the nucleation sites of MC carbides in addition to the bainitic transformation, which resulted in finer and denser MC carbides. It is, thus, believed that the enhanced high-temperature strength of the steels containing both Nb and Mo was attributed to both bainitic transformation hardening and the precipitation hardening caused by uniform distribution of fine MC particles.  相似文献   

9.
Cr13系铸造马氏体不锈钢铌和碳的合理配比关系   总被引:1,自引:1,他引:0  
金洋帆  臧其玉  张拓  杨弋涛 《钢铁》2019,54(3):87-95
 铌作为常用的微合金元素,常被用于细化晶粒、改善钢的强度与韧性,而在不锈钢中关于铌与碳化物质量分数的定量关系以及铌和碳的合理配比的研究工作尚不够深入。通过对不同铌质量分数的1Cr13与3Cr13马氏体不锈钢的组织、碳化物质量分数等进行观察和测量,总结出了比较合理的C-Nb关系式以及这两种元素对碳化物质量分数的影响的定量关系,并结合文献提出了铌元素对Cr13系列马氏体碳化物沉淀的影响原理。结果表明,铌会促进碳化物的沉淀并改变碳化物的成分(碳化物中出现铌元素),并且随着铌质量分数的增加,Cr13系列马氏体不锈钢中的碳化物都出现了指数型增长。得出Cr13系列马氏体不锈钢中碳化物的质量分数与碳和铌的质量分数存在指数型关系,同时合理的C-Nb关系配比呈线性。  相似文献   

10.
The distribution, morphology and size of the carbide precipitates in as- rolled and as- tempered Ti- Mo microalloyed steels were elucidated by optical microscopy and transmission electron microscopy. The change in nanoscale precipitate during tempering and its effect on strength of test steel were analyzed by tensile test. The results revealed that substantial improvement in yield strength occurred on tempering at 600?? for 2 h because of the supersaturated precipitation and homogeneous distribution of profuse (Ti, Mo)C carbide in the matrix in average size from 5-6nm except interphase precipitation, and the precipitation volume fraction of the sample tempered at 600?? exhibited an approximate 3%-5% increase compared to the samples tempered at 650 and 700??. With increase in tempering temperature and holding time, the interphase- precipitated carbides were observed to have slightly coarsened to a maximum size of less than 8nm, but did not coarsen as much as the supersaturated carbides formed during tempering. The interphase precipitation exhibits more excellent behavior of thermal stability than supersaturated precipitation during tempering process.  相似文献   

11.
陈辉  喻异双  吴彬彬  尚成嘉 《钢铁》2019,54(12):96-103
 为了揭示1 000 MPa级低碳加铌钒钛微合金钢的高强韧机制,研究了S1(w(C)=0.09%)与S2(w(C)=0.17%)两种合金成分的油井管钢成分-工艺-组织-性能关系。试验表明,两种成分试验钢经水淬后的组织分别为板条贝氏体加少量马氏体和马氏体加少量贝氏体的复相组织。两种成分钢经过450~600 ℃、30 min的中温回火后,组织中均出现碳化物析出,且S1试验钢回火后的屈服强度基本不变,抗拉强度下降了约70 MPa,S2试验钢回火后的屈服强度与抗拉强度迅速升高170 MPa左右。溶度积公式的计算结果表明,两种钢的水淬组织中铌、钛元素析出彻底且析出物的体积分数都很小,因此回火铁素体基体中的VC析出强化对S1试验钢回火后屈服强度保持不变以及S2试验钢回火后屈服、抗拉强度提高起到重要作用。  相似文献   

12.
HS600 and HS800 are two new generation, high-strength advanced ferritic steels that find widespread application in automobiles. During commercial production of the same grades with different thicknesses, it has been found that mechanical properties like tensile strength and stretchability varied widely and became inconsistent. In the current endeavor, two different thicknesses have been chosen from a mill trial sample of HS600 and HS800. An in-depth structural characterization was carried out for all four alloys to explain the variation in their respective mechanical and shear punch properties. The carbon content was smaller and Ti + Mo quantity was higher in case of HS800 with respect to HS600. The microstructure of both steels consisted of the dispersion of (Ti,Mo)C in a ferrite matrix. The grain size of HS800 was little larger than HS600 due to an increased coiling temperature (CT) of the former in comparison to the latter. It was found that in case of same grade of steel with a different thickness, a variation in microstructure occurred due to change in strain, CT, and cooling rate. The strength and stretch formability of these two alloys were predominantly governed by a microalloyed carbide. In this respect, carbides with a size range above 5 nm were responsible for loosing coherency with ferrite matrix. In case of HS600, both ≤5 and >5-nm size (Ti,Mo)C precipitates shared a nearly equal fraction of microalloyed precipitates. However, for HS800, >5-nm size (Ti,Mo)C carbide was substantially higher than ≤5-nm size alloy carbides. The ultimate tensile strength and yield strength of HS800 was superior to that of HS600 owing to a higher quantity of microalloyed carbide with a decreased column width and interparticle distance. A higher degree of in-coherency of HS800 made the alloy prone to crack formation with low stretchability.  相似文献   

13.
对炉卷轧机生产X80管线钢的控制轧制技术以及X80钢板/卷的显微组织、析出相、力学性能以及制作的直缝焊管与螺旋焊管的力学性能等进行了分析研究。结果表明:炉卷轧机X80管线钢板/卷获得了较高的强度与韧性,其中平均屈服强度与抗拉强度分别达到575 MPa与665 MPa以上,-20℃的冲击功高于330 J,FATT50CVN-60℃;管线钢为典型的细小针状铁素体组织,铁素体基体上弥散分布着纳米尺度的Nb、Ti的碳氮化物析出相,析出粒子主要有两种:一种平均尺寸在20 nm左右,是以NbC为主的Nb(Ti)C析出相;另一类粒子尺寸大多在50~200 nm,是以TiN为主的Ti、Nb(NC)复合析出相;利用炉卷轧机X80钢板与钢卷制成的直缝焊管与螺旋焊管具有较高的综合力学性能。  相似文献   

14.
对一种含铜超低碳Mn-Nb-B系微合金钢进行TMCP工艺,得到屈服强度达850 MPa的超低碳贝氏体钢。采用光学显微镜和扫描电子显微镜对试验钢不同板厚处的组织进行观察与分析,通过透射电子显微镜分析试验钢板条贝氏体间析出物,结果表明,屈服强度850 MPa超低碳贝氏体钢组织主要为细小的板条贝氏体,沿板厚方向上贝氏体板条宽度变化不大,板条长度从表层到心部逐渐增大。贝氏体板条的细化和微细析出物的形态、大小及分布对试验钢的强韧性起决定作用。  相似文献   

15.
利用金相显微镜、扫描电子显微镜及透射电子显微镜等分析手段,对1 000 MPa级高强钢的显微组织与析出相进行了研究。结果表明,试验钢的显微组织为板条状贝氏体和板条状马氏体,并存在少量残余奥氏体。大量析出相分布在基体上,平均尺寸30~60 nm,组织强化、析出强化、位错强化是高强钢主要的强化方式。  相似文献   

16.
17.
The effect of Nb microalloying on microstructure, mechanical properties, and pitting corrosion properties of quenched and tempered 13?pct Cr-5?pct Ni-0.02?pct C martensitic stainless steels with different Mo and N contents was investigated. The microstructure, density, and dispersion of high-angle boundaries, nanoscale precipitates, and amount of retained austenite were characterized by using electron backscattered diffraction, transmission electron microscopy, and X-ray diffraction to correlate with properties. The results show that the combined effects of lowering nitrogen content in 13?pct Cr-5?pct Ni-1~2?pct Mo-0.02?pct C steels to 0.01?wt pct, and adding 0.1?pct Nb are to decrease the amount of Cr-rich precipitates, as Nb preferentially combines with residual carbon and nitrogen to form carbonitrides, suppressing the formation of Cr2N and Cr23C6. Austenite grain refinement can be achieved by Nb microalloying through proper heat treatment. If the nitrogen content is kept high, then Cr-rich precipitates would occur irrespective of microalloying addition. The NbN would also occur at high temperature, which will act as substrate for nucleation of coarse precipitates during subsequent tempering, impairing the toughness of the steel. It was shown that the addition of Nb to low interstitial super martensitic stainless steel retards the formation of reversed austenite and results in the formation of nanoscale precipitates (5 to 15?nm), which contribute to a significant increase in strength. More importantly, the pitting corrosion resistance was found to increase with Nb addition. This is attributed to suppression of Cr-rich precipitates, which can cause local depletion of Cr in the matrix and the initiation of pitting corrosion.  相似文献   

18.
吴迪  厉勇  王春旭  傅万堂  唐景林 《钢铁》2016,51(8):60-63
 采用SEM、TEM、HRTEM、物理化学相分析法研究了回火温度对Fe-Co-Ni-Cr-Mo-W系2 200 MPa级二次硬化型超高强度钢的析出相及力学性能的影响。结果表明,试验钢在回火过程中具有明显二次硬化现象;抗拉强度、屈服强度在490、530 ℃达到峰值,峰值强度分别为2 243、1 859 MPa;试验钢在510 ℃具有较好的综合力学性能,抗拉强度为2 185 MPa,屈服强度为1 859 MPa,冲击功为35 J;在400~440 ℃回火时,马氏体板条内和板条界处析出大量粗大的层片状渗碳体;回火温度高于470 ℃时,板条内析出大量均匀弥散分布的细小M2C碳化物及少量的laves相Fe2W,这是产生二次硬化现象的原因;随着回火温度的升高,M2C型碳化物中的钼、钨元素质量分数增加,铁、铬质量分数降低。  相似文献   

19.
In the present study, low carbon microalloyed ultrahigh-strength steel was manufactured on a pilot scale. Transformation of the aforesaid steel during continuous cooling was assessed. The steel sample was thermomechanically processed followed by air cooling and water quenching. Variation in microstructure and mechanical properties at different finish rolling temperatures (FRTs) was studied. A mixture of granular bainite and bainitic ferrite along with interlath and intralath precipitation of (Ti, Nb)CN particles is the characteristic microstructural feature of air-cooled steel. On the other hand, lath martensitic structure along with a similar type of microalloying precipitates of air-cooled steels is obtained in the case of water-quenched steel also. The best combination of strength (1440 to 1538 MPa) and ductility (11 to 16 pct) was achieved for the selected range of FRTs of water-quenched steel.  相似文献   

20.
  利用透射电镜(TEM)、扫描电镜(SEM)等试验方法,研究了新型低成本HB450低合金超高强耐磨钢在不同回火条件下组织和性能演变规律,并分析了其强韧变化机制。结果表明:回火对试验钢的硬度和强度均有较大影响。在200~250℃回火,试验钢表现出良好的强韧性配合,满足国标工程机械用高强度耐磨板GB/T24186—2009中NM450级别要求;在250℃回火时,试验钢出现硬化迹象。透射电镜分析表明,在该温度下回火,析出物中除了有大量弥散分布的ε 碳化物外,还出现了少量30~50nm的(Nb,Ti)(C,N)粒子,该2类粒子对试验钢的强化起着较大的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号