共查询到16条相似文献,搜索用时 65 毫秒
1.
2.
3.
MEFP智能雷攻击坦克顶甲的平行毁伤模型 总被引:6,自引:0,他引:6
为了评价智能雷对坦克目标的毁伤效能,根据MEFP战斗部技术的特点,在智能雷扫描运动轨迹方程的基础上,建立了MEFP智能雷攻击坦克顶甲的平行毁伤模型.通过建立的蒙特卡洛模型,运用计算机进行数值仿真,计算了在EFP设计参数影响下智能雷对坦克目标的毁伤概率.结果表明,MEFP智能雷采用平行毁伤模型技术,可以提高智能雷对坦克目标的毁伤效能. 相似文献
4.
利用LS-DYNA显示动力分析有限元程序,采用流固耦合方法,对带尾翼EFP的形成过程进行数值模拟。结果表明:该装药结构能形成带有8个尾翼的EFP,带尾翼EFP的长径比是EFP长径比的2.23倍,其头部速度比EFP增加了15%。 相似文献
5.
利用LS-DYNA显示动力分析有限元程序,采用流固耦合方法,对带尾翼EFP的形成过程进行数值模拟。结果表明:该装药结构能形成带有8个尾翼的EFP,带尾翼EFP的长径比是EFP长径比的2.23倍,其头部速度比EFP增加了15%。 相似文献
6.
7.
8.
9.
爆炸成型弹丸药型罩结构分析 总被引:4,自引:0,他引:4
通过爆炸成型弹丸(EFP)物理模型的计算结果分析了球缺罩和大锥角罩EFP的形成过程,并由实验结果给予证实,最后对EFP罩的设计进行了探讨。 相似文献
10.
根据多爆炸成型弹丸智能雷攻击坦克顶甲时的运动特性。建立了智能雷扫描轨迹模型。在此基础上,讨论了区域识别、占空比识别和二次扫描识别三种不同扫描捕获准则。并应用蒙特卡洛方法计算分析了不同扫描捕获准则对MEFP智能雷毁伤概率的影响。结果表明:建立的多爆炸成型弹丸智能雷扫描轨迹模型和区域识别扫描捕获准则基本符合工程实际情况。 相似文献
11.
为了进一步提高爆炸成型侵彻体(EFP)的侵彻能力,基于大锥角罩结构的圆弧段设计,提出了一种可形成长杆状密实EFP的锥弧结合罩。分析了锥弧结合罩与传统的大锥角罩和弧锥结合罩在压垮过程中的区别。运用LS-DYNA仿真软件,计算得到了锥弧结合罩的结构参数(曲率半径、锥角、壁厚)对EFP速度、长径比、密实度等侵彻体成型参数的影响规律。找出了EFP成型较佳时各结构参数的取值范围:曲率半径为1.1~1.3倍装药口径,锥角为155°~160°,壁厚为0.04~0.046倍装药口径,并设计得到了一种可形成长径比为2、密实度为0.88的EFP的锥弧结合罩结构。 相似文献
12.
为提高整体式多爆炸成型弹丸毁伤能力,采用LS-DYNA数值仿真软件模拟了装药参数对整体式多爆炸成型弹丸(MEFP)成型的影响。结果表明,装药间距主要对周边弹丸成型形态与发散角产生影响;随着装药间距的增加,整体式MEFP速度和中心弹丸长径比变化较小,周边弹丸则由长杆形逐渐向"球形"发展,周边弹丸拖尾逐渐减小,弹丸飞行稳定性增强,弹丸发散角也随着装药间距的增加逐渐减小。随着装药长径比的增加,中心弹丸速度和长径比都得到大幅提高,中心弹丸侵彻能力增强;周边弹丸外形则由"球形"逐渐向长杆形发展,周边弹丸拖尾逐渐增大,弹丸飞行稳定性减弱,弹丸发散角则随着装药长径比的增加呈现先增大后减小趋势,故可根据具体目标选择合适的长径比装药,以提高对目标的打击毁伤概率。 相似文献
13.
14.
鱼雷聚能战斗部自锻弹丸水中运动特性仿真研究 总被引:1,自引:0,他引:1
聚能战斗部是鱼雷战斗部的一个重要发展方向,聚能战斗部中的药型罩在聚能效应的作用下形成自锻弹丸(EFP),其对水中目标的毁伤效果主要取决于EFP经过一定距离的水介质后到达目标时的速度和形状。本文以EFP本身为研究对象,利用有限元分析软件ANSYS/LS-DYNA对鱼雷聚能战斗部EFP在水中的运动特性作了数学仿真分析,模拟了EFP在水中运动自身的速度梯度、EFP的形状等随时间的变化,对EFP在水中运动自身的速度梯度和形状等参数随时间变化规律做了初步研究。本文的研究成果对鱼雷聚能战斗部结构、药型罩的设计和优化以及提高鱼雷聚能战斗部对目标毁伤效果的研究具有一定的参考意义。 相似文献
15.
16.
通过建立多爆炸成型弹丸智能雷对机动目标毁伤概率计算的蒙特卡洛模型.运用计算机进行数值仿真,研究了雷体质量对多爆炸成型弹丸智能雷平行毁伤模型毁伤概率的影响.得到了智能雷武器系统在各种因素影响下对机动目标的毁伤概率,并提出了提高多爆炸成型弹丸智能雷毁伤概率能力的技术途径。 相似文献