首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
何熙  钟丽琴 《啤酒科技》2011,(11):28-31
本文研究了糖化过程中麦芽淀粉酶系的热稳定性、不同品种麦芽间淀粉酶热稳定性的差异及对麦汁糖组分的影响。结果表明糖化中45~65℃α-淀粉酶活力变化不显著;β-淀粉酶在60℃左右时酶活最大;极限糊精酶在45~60℃时酶活力稳定;温度超过60℃,β-淀粉酶和极限糊精酶的酶活显著下降,温度超过65℃α-淀粉酶活力下降明显。不同品种麦芽中淀粉酶系的热稳定性存在差异,其中β-淀粉酶热稳定性的差异最为显著。麦芽品种对麦汁可发酵性的影响明显。研究表明β-淀粉酶活力及其热稳定性是决定麦汁可发酵性的主要因素。  相似文献   

2.
当用禾发芽高粱(0-100%)和麦芽(100-0%)并结合工业用酶制剂糖化时对麦汁质量的影响进行了评价,糖化过程温度为50℃、95℃和60℃,评价不同酶的使用,稳定的α-淀粉酶对高效率糖化是必要的,高粱含量高的糖化醪须有一个真菌α-淀粉酶相对于100%麦芽糖化醪以起到提高过滤速率的作用,细菌蛋白酶的添加可增加可溶性氮的数量和肽的降解、谷粉中添加相对比例的高梁可能导致麦汁滤速、色度、粘度、发酵极限、游离氨基氮、高分子量氮的减小并相应增加pH值(p〈0.01)总的说来,小比例的麦芽添加到未发芽高粱糖化醪中并使用一定量的酶,被认为对未发芽高粱酿造高质量贮藏啤酒具有一定的作用。  相似文献   

3.
当用未发芽高粱(0-100%)和麦芽(100-0%)并结合工业用酶制剂糖化时对麦汁质量的影响进行了评价,糖化过程温度为50℃、95℃和60℃,评价不同酶的使用,稳定的α-淀粉酶对高效率糖化是必要的,高粱含量高的糖化醪须有一个真菌α-淀粉酶相对于100%麦芽糖化醪以起到提高过滤速率的作用,细菌蛋白酶的添加可增加可溶性氮的数量和肽的降解。谷粉中添加相对比例的高粱可能导致麦汁滤速、色度、粘度、发酵极限、游离氨基氮、高分子量氮的减小并相应增加pH值(p0.01)。总的说来,小比例的麦芽添加到未发芽高粱糖化醪中并使用一定量的酶,被认为对未发芽高粱酿造高质量贮藏啤酒具有一定的作用。  相似文献   

4.
α—葡萄糖苷酶是麦芽中能够降解淀粉的四种糖化酶之一。由于在生产过程中淀粉转化为可发酵性糖的最适作用温度为65~73℃。这些酶类的热稳定性是非常重要的,α—葡萄糖苷酶暴露于此温度下10分钟左右,其活性将是30℃时酶活性的5%,甚至更少。我们设想存在一种耐热性更强的α—葡萄糖苷酶,能够提高高温糖化过程中可发酵性糖的产量。为了证实这种假设,我们将非变异重组α—葡萄糖苷酶(对照)和经过变异获得的具有更强耐热性的重组α—葡萄糖苷酶,在实验室糖化中比较实际发酵度以及麦芽糖糊精的含量。加耐热性α—葡萄糖苷酶的糖化过程,其葡萄糖、麦芽糖、麦芽三糖及实际发酵度均有显著增长。因此,我们能够断定,由于糖化过程中耐热性α—葡萄糖苷酶的存在,产生了更多的可发酵性糖,而不需要通过增加投料量,便能够使糖化效率得以提高。  相似文献   

5.
采用酶法制备低DE值脂肪替代物,比较高温α-淀粉酶,中温α-淀粉酶,β-淀粉酶和糖化酶酶解大米淀粉制备的脂肪替代物-麦芽糊精的性质.结果表明,高温α-淀粉酶最适合用于制备低DE值麦芽糊精,其最佳制备工艺参数为酶用量3mL,pH6.2,酶解温度95℃,酶解时间10min.该条件下样品的流变试验结果表明,DE值在3左右的麦芽糊精形成凝胶时相应的凝胶温度为73.6℃.  相似文献   

6.
几项主要技术措施一、制备组成良好的麦汁1.麦芽搭配使用麦芽分级存放,投料时,根据不同品种、酒型,选用不同的麦芽,按照色度、糖化力、α—氨态氮等指标,常常是两种或三种搭配使用,实践证明,这是制备组成良好麦汁的重要措施。2.采用双醪煮出浸出糖化工艺此法对含酶的麦芽不进行煮沸,只煮沸米醪、混合醪液全部经过63℃、70℃的最适作用温度,升温缓慢,生化反应充分,可发酵性糖、可溶性氮均能得到提高,麦汁的最  相似文献   

7.
使用糖化程序为50℃蛋白休止、95℃和60℃,由50%总谷物湿重的未发芽高梁(南非品种)和50%的麦芽进行1000升中试规模的酿造。糖化醪外加耐高温稳定性细菌α-淀粉酶、细菌中性蛋白酶和真菌α-淀粉酶。对照为全麦芽酿造。高梁糖化醪在糖化期间出现糖化困难、谷粉的浸出率比较低:高梁糖化醪与对照糖化醪显示出相类似的过滤状况;高梁麦芽汁比对照麦芽汁的外观发酵度低。嫩啤酒的过滤无问题。高梁啤酒与对照啤酒在色度、pH值和胶体稳定性方面很接近,高梁啤酒明显缺乏泡沫稳定性,可见高梁麦汁的可发酵性糖类比较低,因此高梁啤酒的总酒精含量也比较低。感官分析表明在高梁啤酒、对照啤酒和市售麦芽啤酒之间关于香气、口感、后味和清亮度方面无显著差异,然而在色度、初始风味和泡沫稳定性方面有显著差别。  相似文献   

8.
胡晓宇 《啤酒科技》2009,(12):63-70
本实验的目的是使用简单相关性来比较标准及非标准的麦芽品质性状检测方法,并用多元统计来分析9个标准和22个非标准的麦芽检测方法,以鉴别六个优质啤酒大麦品种。简单线性回归表明这些品种的α-淀粉酶、β-淀粉酶、极限糊精酶及α-葡萄糖苷酶的耐热性之间存在差异,与麦汁的渗透溶质浓度呈正相关性(r=-0.853~0.958,P≤0.05~0.01),与糖化力相关(r=0.872~0.937,P≤0.05~0.01)。麦芽品质非标准性状的主成分分析(PCA)被认为比标准性状的主成分分析更有效,前者可以用最低实际发酵度对六棱和二棱品种进行区分,而实际发酵度是糖化性能的重要指标。六个优质啤酒大麦中的两个品种最显著的品质性状特征是α-葡萄糖苷酶、极限糊精酶及α-淀粉酶的活性最低,而这两种麦芽的α-淀粉酶、β-淀粉酶和极限糊精酶的耐热性以及它们的麦汁渗透溶质浓度却是最高的。  相似文献   

9.
四糖化的技术条件1.糖化温度麦芽中淀粉酶的糖化作用,是随温度的变化而变化的;作用最迅速时的温度称为最适糖化温度。高于或低于这个温度,糖化作用则变慢。据测定,麦芽的最适糖化温度为62~65℃。由于原料的变化,或对麦汁成分要求的不同,所采取的糖化温度也不同,一般掌握的标准如表47所列。  相似文献   

10.
分析了不同产地(加拿大、澳大利亚)、不同品种(Metcalfe、Copeland、Hind marsh、Bass、Baudin、Scope、Gairdner)麦芽淀粉酶系活力,发现加拿大麦芽淀粉酶活力普遍高于澳大利亚麦芽,且品种间存在显著差异;通过研究麦芽淀粉酶系活力与常规指标的关系,发现常规指标糖化力与β-淀粉酶与极限糊精酶活力存在显著相关性;其次,将酶系活力差异较大的麦芽按照不同比例进行搭配,分析搭配前后酶活力变化,发现搭配后3种酶活实际值均高于按比例计算的理论值,表明麦芽搭配具有协同作用;为进一步研究淀粉酶活力对麦汁糖组分的影响,模拟大生产含辅料的糖化工艺进行麦汁制备,分析配方麦芽淀粉酶活力与麦汁糖组成的关系,发现影响麦汁极限发酵度、可发酵性糖比例的关键酶为极限糊精酶。  相似文献   

11.
新型耐酸性液化糖化酶的分离提取及其特性   总被引:2,自引:0,他引:2  
刘春莉  张文学  江孝明  杨瑞 《酿酒》2003,30(3):73-76
白曲霉基因工程菌TR12在液体培养基中32℃摇瓶培养96h,粗提酶液经进一步分离提取,得到同时具有液化和糖化两种酶活力的新型酶制剂,最适PH值为4.6。耐酸性α—淀粉酶活性的最适温度为60℃,糖化酶活性的最适温度为50℃。在pE54.6酸性条件下,该液化糖化酶在50℃保温1h,仍具有原酶活性。Ca^2 对该耐酸性液化糖化酶有激活作用,Fe^3 、Ak^3 等金属离子对该酶活力有一定的抑制作用。  相似文献   

12.
糖化的目的是为了制取生产某种啤酒所相应的麦汁,并提高糖化收得率和节约能源。酿造者们通过控制温度、时间、醪液浓度、调节 PH 等手段以发挥麦芽自身酶及外加酶的作用来实现,这就是糖化方法的选择,作者就此谈点看法和体会。一、不同原料,选用不同糖化工艺如麦芽溶解较好,粗细粉浸出率差在1.5%以下,蛋白质溶解度在40-42%,α-氨  相似文献   

13.
麦汁为啤酒的主要原料,麦汁的制备决定了啤酒的种类和质量,并直接影响到啤酒生产工艺与成品质量,因此在啤酒生产过程中需要不断优化麦汁制备工艺,形成优良的麦汁色度。麦汁的制备工艺主要包括麦芽制备、麦芽粉碎、糖化、麦汁煮沸沉淀、麦汁过滤与主发酵等步骤,其中糖化工艺会对啤酒麦汁的色度与品质造成影响。因此,需控制好麦芽质量及其粉碎度、糖化温度、淀粉酶pH值、糖化醪浓度等因素,并进一步优化糖化工艺参数,为呈现更好的啤酒麦汁色度奠定坚实的基础。基于此,本文研究糖化工艺对啤酒麦汁色度的影响,并提出啤酒麦汁制备中糖化工艺的优化措施,以提高啤酒麦汁的色度,促进啤酒酿造工艺的优化,推动啤酒行业的高质量发展。  相似文献   

14.
郑敏  赵鹏 《酿酒》1998,(2):26-28
发酵度是决定啤酒特点的重要指标,本文论述了利用α-淀粉酶、β-淀粉酶的特性在实验室确定最适的糖化工艺和糖化配方,调整麦汁的发酵度。以达到控制啤酒的发酵度在要求的范围内的目的。  相似文献   

15.
以小麦SN1391为试材,按三因素三水平正交设计进行实验得到9组麦芽,通过对麦芽品质分析研究小麦芽β-葡聚糖酶活与麦芽品质的关系。发现小麦芽β-葡聚糖酶活与麦芽浸出物含量、α-淀粉酶活力存在极显著正相关性(P<0.01);与糖化力、库尔巴哈值、α-AN、蛋白酶活力存在显著正相关性(P<0.05);与麦汁粘度、糖化力存在显著负相关性(P<0.05)。影响β-葡聚糖酶活力的工艺参数主次顺序为:浸麦度>焙焦温度>发芽温度。浸麦度为47%~48%、发芽温度为15~17℃、焙焦温度为80~81℃时SN1391小麦芽β-葡聚糖酶活力最高。  相似文献   

16.
焙焦温度对麦芽品质及酶活性影响   总被引:1,自引:1,他引:1  
研究了不同焙焦温度对成品麦芽品质及酶活的影响.结果表明,随着焙焦温度的升高,麦芽的糖化力、α-AN、浸出物含量及水分含量都有所下降,且糖化力下降显著(α=0.041<0.05):色度、糖化时间、麦汁黏度随焙焦温度的升高而增加,淀粉酶活力都呈下降趋势,且β-淀粉酶活力下降极显著(α=0.0004<0.01);蛋白酶活力、β-葡聚糖酶活力、PPO活力都有所下降,且得出PPO的失活温度为82℃.  相似文献   

17.
发明背景最近许多被称为低糖低热量啤酒或淡爽型啤酒已被投放市场。其中一些啤酒的生产过程被认为与 Gablinger 的美国专利 No.3,379,534中所描述的过程相似。Gablinger 过程包括在糖化或发酵阶段往原料中加酶——葡萄糖苷酶进行酿造,以分解一部分糊精,以免其保留在成品啤酒中。Gablinger 专利声称,α-淀粉酶、β-淀粉酶是由酿造中所用的大麦芽提供的,在他的发明中也不例外。糖尿病患者喝的啤酒或低糖啤酒也已问世。Distler 的美国专利 No.2,223,444叙述了采用在低温真空下煮沸糖化醪和加酒花的麦汁,以保护麦芽中的酶系、生产低糖啤酒的方法。其温度不超过64~66℃。这个过程  相似文献   

18.
麦芽经粉碎,添加糖化酶(1.4-a-D-葡聚糖水解酶),在70℃糖化生产麦汁,原麦汁浓度42°S,真正发酵度为87%,啤酒中的残糖小于0.75%w/v。并对糖化 pH 值,钙含量,酶的用量以及糖化时间等影响因素进行了研究,该方法对溶解不良的麦芽有好的效果。糖化酶样品中的蛋白酶活性在允许范围内,中试结果表明对啤酒泡沫质量无影响,优点是在麦汁考沸期间可确保糖化酶失活,而且在煮沸前比其它酶处理麦汁的时间短。  相似文献   

19.
pH值是麦芽、麦汁、啤酒的一项重要指标。麦汁制备过程中调控PH值,要考虑适应各种酶的作用,以获得最大浸出物收得率,而且使麦汁组成分比例合理,以便为酵母提供最佳发酵基质。发酵期间PH值的控制,要保证成品啤酒的胶体稳定性以及口感,使人们乐于接受。1.制麦过程中PH值的调节一般控制浸麦水的PH值在10~12之间,即可杀灭附着在大麦表面的微生物,浸出谷皮中的有害物质,又不会造成对胚芽的损害。一般用石灰乳调节,石灰使用量为大麦量的0.2%~0.3%。2.糖化过程中PH值的调节与控制糖化过程是一个复杂的酶反应过程,主要包括…  相似文献   

20.
研究了11种进口麦芽和18种国产麦芽中超氧化物歧化酶(SOD)活性的差异以及与协定麦汁还原力之间的关系。以甘啤-3号麦芽为对象,采用7种恒温糖化工艺考察了糖化温度对2者的影响。结果表明,不同品种麦芽中,SOD的差异比较明显(1205.6~2126.0U/g),而且麦芽的SOD活性与协定麦汁的还原力之间存在显著的正相关性(相关系数r=0.898,P<0.01);SOD活性随着糖化温度的升高而逐渐降低,55℃恒温糖化60min后有53.22%的酶活残存;当糖化温度升高到65℃时,SOD的活性大幅度下降,30min后仍有25.45%的酶活残存;糖化温度为70℃和80℃时SOD下降到极低的活性;麦汁的还原力随着糖化温度的升高而升高,80℃恒温糖化100min后麦汁的还原力高达3.75mmol/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号