共查询到20条相似文献,搜索用时 15 毫秒
1.
Model assessment of biogeochemical controls on dissolved organic carbon partitioning in an acid organic soil 总被引:1,自引:0,他引:1
A chemical model (constructed in the ORCHESTRA modeling framework) of an organic soil horizon was used to describe soil solution data (10 cm depth) and assess if seasonal variations in soil solution dissolved organic carbon (DOC) could be explained by purely abiotic (geochemical controls) mechanisms or whether factors related to biological activity are needed. The NICA-Donnan equation is used to describe the competitive binding of protons and cations and the charge on soil organic matter. Controls on organic matter solubility are surface charge and a parameter, gamma, that accounts for the distribution of humic molecules between hydrophobic and hydrophilic fractions. Calculations show that the variations in solute chemistry alone are not sufficient to account for the observed variations of DOC, but factors that alter gamma, such as biological activity, are. Assuming that DOC in organic soils is derived from soluble humic material and that gamma is modified seasonally due to biological activity (with monthly soil temperature used as a surrogate for biological activity) we are able to model the observed seasonality of soil solution DOC over a 10-year period. Furthermore, with modeled DOC coupled to other geochemical processes we also model soil solution pH and Al concentrations. 相似文献
2.
3.
Bergamaschi BA Krabbenhoft DP Aiken GR Patino E Rumbold DG Orem WH 《Environmental science & technology》2012,46(3):1371-1378
The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (±12.6) g C m(-2) yr(-1), which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ± 4.5 μg total Hg m(-2) yr(-1) and 3.1 ± 0.4 μg methyl Hg m(-2) yr(-1)) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. 相似文献
4.
Bacterial growth in distribution systems: effect of assimilable organic carbon and biodegradable dissolved organic carbon 总被引:3,自引:0,他引:3
Two distribution systems, one treating water by ozonation and another treating water by nanofiltration in parallel with lime softening, were monitored for bacterial growth. Both systems kept disinfectant residuals such as chlorine and chloramine in their respective distribution systems. Bacterial growth was assessed by heterotrophic plate counts (HPC) on R2A agar. In the distribution systems fed by ozonated water, HPCs were correlated (R2 = 0.96) using an exponential model with the assimilable organic carbon (AOC) at each sampling site. Also, it was observed that ozonation caused a significant increase in the AOC concentration of the distribution system (over 100% increase) as well as a significant increase in the bacterial counts of the distribution system (average increase over 100%). The HPCs from the distribution systems fed by nanofiltration in parallel with lime-softening water also displayed an exponential correlation (R2 = 0.73) with an exponential model based on AOC. No significant correlation was found between bacteria growth on R2A agar and BDOC concentrations. Therefore, in agreement with previous work, bacterial growth in the distribution systems was found to correlate with AOC concentrations. 相似文献
5.
The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon 总被引:1,自引:0,他引:1
The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) have been carried out at three temperatures (5 degrees C, 20 degrees C, 35 degrees C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 相似文献
6.
13C NMR analyses of hydrophobic dissolved organic matter (DOM) fractions isolated from a landfill leachate contaminated groundwater near Norman, OK; the Colorado River aqueduct near Los Angeles, CA; Anaheim Lake, an infiltration basin for the Santa Ana River in Orange County, CA; and groundwater from the Tomago Sand Beds, near Sydney, Australia, found branched methyl groups and quaternary aliphatic carbon structures that are indicative of terpenoid hydrocarbon precursors. Significant amounts of lignin precursors, commonly postulated to be the major source of DOM, were found only in trace quantities by thermochemolysis/gas chromatography/mass spectrometry of the Norman Landfill and Tomago Sand Bed hydrophobic DOM fractions. Electrospray/tandem mass spectrometry of the Tomago Sand Bed hydrophobic acid DOM found an ion series differing by 14 daltons, which is indicative of aliphatic and aryl-aliphatic polycarboxylic acids. The product obtained from ozonation of the resin acid, abietic acid, gave a similar ion series. Terpenoid precursors of DOM are postulated to be derived from resin acid paper sizing agents in the Norman Landfill, algal and bacterial terpenoids in the Colorado River and Anaheim Lake, and terrestrial plant terpenoids in the Tomago Sand Beds. 相似文献
7.
Despite their strong hydrophobicity, recent studies showed widespread occurrence of pyrethroid in downstream surface waters bodies. In this work, the effect of dissolved organic carbon (DOC) on the sorption and desorption of pyrethroids in sediment was evaluated to understand the role of DOC in facilitating pyrethroid transport. Presence of DOC from three sources at 38 ± 2 mg L?1 in the aqueous phase decreased pesticide sorption to a sediment by 1.7 to 38.9 times and increased their desorption by 1.2 to 41.4 times. The effect on pyrethroid sorption to the sediment was linear. In addition, interactions between DOC and pyrethroids, when taking place prior to the contact with sediment, decreased sorption of some pyrethroids even further, implying that DOC-pyrethroid complexs were relatively stable in solution. DOC sources with higher contents of carboxylic and phenolic groups were found to have a higher potential to associate with pyrethroids. The DOC-water partition coefficients (K(DOC)) obtained by solid-phase microextraction measurement were significantly correlated (P < 0.01) with K(d) values measured for the sediment. These results provide evidence that DOC increases the distribution of pyrethroids from the sediment to the solution phase and plays an important role in mobilizing pyrethroids in runoff and surface streams. 相似文献
8.
O'Driscoll NJ Lean DR Loseto LL Carignan R Siciliano SD 《Environmental science & technology》2004,38(9):2664-2672
The production of dissolved gaseous mercury (DGM) in freshwater lakes is induced by solar radiation and is also thought to be linked to processes mediated by dissolved organic carbon (DOC). Studies investigating these processes using comparisons between lakes are often confounded by differences in DOC content and structure. In this study, we investigated the link between DOC concentrations and DGM production by using tangential ultrafiltration to manipulate DOC concentrations in water samples taken from a given lake. In this way, a range of samples with different DOC concentrations was produced without substantial changes to DOC structure or dissolved ions. This was repeated for four lakes in central Quebec: two with highly logged drainage basins and two with minimally logged drainage basins. On two separate days for each lake, water samples (filtered to remove >99% of microorganisms) with varying DOC concentrations were incubated in clear and dark Teflon bottles on the lake surface. DGM concentrations were measured at 3.5-h intervals over the course of 10.5 h. Levels of DGM concentrations increased with increasing cumulative irradiation for all lakes until approximately 4000 kJ m(-2) (400-750 nm, photosynthetically active radiation (PAR)), when DGM concentrations reached a plateau (between 20 and 200 pg L(-1)). When we assumed that DGM production was limited by the amount of photoreducible mercury, reversible first-order reaction kinetics fitted the observed data well (r2 ranging between 0.59 and 0.98, p < 0.05 with the exception of N70 100% DOC, 0% DOC, and K2 0% DOC with p = 0.06, 0.10, and 0.11, respectively). The DGM plateaus were independent of DOC concentrations but differed between lakes. In contrast, photoproduction efficiency (DGMprod) (i.e., the amount of DGM produced per unit radiation (fg L(-1) (kJ/m2)(-1)) below 4000 kJ m(-2) PAR) was linearly proportional to DOC concentration for both logged lakes (r2 = 0.97, p < 0.01) and nonlogged lakes (r2 = 0.52, p = 0.018) studied. Furthermore, logged lakes had a lower DGMprod per unit DOC (p < 0.01) than the nonlogged lakes. In these four lakes, the rate of DGM production per unit PAR was dependent on the concentration of DOC. The DGM plateau was independent of DOC concentration; however, there was a significant difference in DGM plateaus between lakes presumably due to different DOC structures and dissolved ions. This research demonstrates an important mechanism by which logging may exacerbate mercury levels in biota. 相似文献
9.
Nitrite (NO2-) formation during ultraviolet (UV) photolysis of nitrate was studied as a function of pH and natural organic matter (NOM) concentration to determine water-quality effects on quantum yields and overall formation potential during UV disinfection of drinking water with polychromatic, medium-pressure (MP) Hg lamps. Quantum yields measured at 228 nm are approximately 2 times higher than at 254 nm under all conditions studied. In the absence of NOM, NO2- quantum yields decrease with time. With addition of NOM, initial quantum yields increase, and the time-dependent decrease is eliminated. At 15 ppm dissolved organic carbon (DOC) as NOM, the quantum yield increases with time. Dissolved inorganic carbon significantly decreases NO2- yields at pH 8 but not pH 6, presumably by reaction of CO2(aq) with peroxynitrite, a major intermediate in NO2- formation. The results indicate important and previously unrecognized roles for NOM and CO2(aq) in nitrate photolysis. When photolysis was carried out using the full spectrum MPUV lamp and germicidally relevant UV doses, NO2- concentrations remained well below the U.S. maximum contaminant level of 1 ppm N, even with nitrate initially present at 10 ppm N. Under current U.S. regulations, NO2- formation should not pose a significant problem for water utilities during UV disinfection of drinking water with MP Hg lamps. 相似文献
10.
Application of the multimedia urban model to compare the fate of SOCs in an urban and forested watershed 总被引:1,自引:0,他引:1
A multimedia model has been developed to estimate the dynamics of semivolatile organic compounds (SOCs) in urban areas. The model is based on a Level III fugacity model of Mackay and consists of six compartments: air, surface water, sediment, soil, vegetation, and an organic film that coats impervious surfaces. The model was used to illustrate the effect of impervious surfaces in urban areas by parametrization for downtown, Toronto, Canada, and modification of the same area to simulate forested conditions. With illustrative emissions of PCB homologues to air, the model indicates that most chemicals are lost by advection, with the remainder undergoing air-to-surface (organic film or vegetation) transfer. Under urban conditions chemicals with Log[K(OA)] < 7.5 volatilize from the film into air where they are susceptible to advection and photolytic degradation. Chemicals with Log[K(OA)] > 7.5 are washed off the film to surface waters where they may undergo volatilization, advection, sedimentation, and degradation. Both loss mechanisms from the film increase the overall mobility of SOCs in the urban relative to the forested environment. In forested areas, vegetation more efficiently accumulates gas- and particle-phase SOCs and subsequently transfers them to surface soils, the greatest chemical reservoir, where they are relatively immobile. 相似文献
11.
Much work has suggested that the rate of attenuation of water-soluble organic contaminants in aerobic aquatic systems is dependent on the level of secondary nutrients in the water column. For example, the decay rate of alachlor, a common herbicide, was over 10 times higher under hypereutrophic compared with oligotrophic water conditions. It has been presumed that higher water column nutrient levels produce larger microbial communities, resulting in higher rates of alachlor cometabolism. However, most earlier field studies only assessed alachlor fate in systems with full light exposure (FLE). Therefore, new experiments were performed to assess how variations in light level affect alachlor cometabolism in such systems. Twelve tank mesocosms were maintained using identical nitrogen (N) and phosphorus (P) supply conditions: four units with full light exposure (100% FLE), four with partial shading (19.3% FLE), and four with near complete shading (0.5% FLE). Alachlor half-lives were found to vary broadly, from 50 to 60 days in higher light units to > 180 days in the 0.5% FLE units. Nutrient analysis indicated that the low light units were severely carbon (C)-limited for microbial decomposition, whereas the other units had excess C relative to N and P. Apparently, reduced light levels cause decreased production of bioavailable C for decomposition, which significantly reduces alachlor cometabolism. The data suggest that water column nutrient levels only correlate with the alachlor decay rate when light levels are high, and that the biodegradable carbon supply must be considered when the fate of water-soluble contaminants in aerobic aquatic systems is assessed. 相似文献
12.
Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon 总被引:29,自引:0,他引:29
Weishaar JL Aiken GR Bergamaschi BA Fram MS Fujii R Mopper K 《Environmental science & technology》2003,37(20):4702-4708
Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements. 相似文献
13.
Impact of water temperature and dissolved oxygen on copper cycling in an urban estuary 总被引:2,自引:0,他引:2
An increasing body of evidence suggests that much of the trace metal contamination observed in coastal waters is no longer derived from point-source inputs, but instead originates from diffuse, non-point sources. Previous research has shown that water temperature and dissolved oxygen regulate non-point source processes such as sediment diagenesis; however, limited information is available regarding the effect of these variables on toxic trace metal cycling and speciation in natural waters. Here, we present data on the seasonal variation of dissolved Cu cycling in the Long Island Sound, an urban estuary adjacent to New York City. An operationally defined chemical speciation technique based on kinetic lability and organic complexation has been applied to examine the most ecologically relevant metal fraction. In contrast to the decrease from spring to summer observed in the total dissolved Cu pool (average +/- SD: 15.1 +/- 4.4 nM in spring and 11.8 +/- 3.5 nM in summer), our results revealed that in the highly impacted western LIS, levels of labile Cu reached higher levels in summer (range 3.6-7.7 nM) than in spring (range 1.5-3.9 nM). Labile Cu in surface waters of the western Sound appeared to have a wastewater source during spring high flow conditions, coinciding with elevated levels of sewage-derived Ag. Labile Cu elsewhere in the LIS during spring apparently resulted from fluvial input and mixing. During summer, labile Cu increased in bottom waters (at one site, bottom water labile Cu increased from 1.5 nM in spring to 7.7 nM in summer), and covariance with tracers of diagenetic remobilization (e.g., Mn) revealed a sedimentary source. Although total dissolved Cu showed no consistent trends with water quality parameters, labile Cu in bottom waters showed an inverse correlation with dissolved oxygen and a positive, exponential correlation with water temperature. These results suggest that future increases in coastal water temperatures may cause the benthic source of labile Cu to become proportionally more significant. 相似文献
14.
Volk C Kaplan LA Robinson J Johnson B Wood L Zhu HW LeChevallier M 《Environmental science & technology》2005,39(11):4258-4264
Natural organic matter (NOM) in drinking water supplies can provide precursors for disinfectant byproducts, molecules that impact taste and odors, compounds that influence the efficacy of treatment, and other compounds that are a source of energy and carbon for the regrowth of microorganisms during distribution. NOM, measured as dissolved organic carbon (DOC), was monitored daily in the White River and the Indiana-American water treatment plant over 22 months. Other parameters were either measured daily (UV-absorbance, alkalinity, color, temperature) or continuously (turbidity, pH, and discharge) and used with stepwise linear regressions to predict DOC concentrations. The predictive models were validated with monthly samples of the river water and treatment plant effluent taken over a 2-year period after the daily monitoring had ended. Biodegradable DOC (BDOC) concentrations were measured in the river water and plant effluent twice monthly for 18 months. The BDOC measurements, along with measurements of humic and carbohydrate constituents within the DOC and BDOC pools, revealed that carbohydrates were the organic fraction with the highest percent removal during treatment, followed by BDOC, humic substances, and refractory DOC. 相似文献
15.
Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition 总被引:3,自引:0,他引:3
Concentrations of dissolved organic carbon (DOC) in freshwaters have increased significantly in Europe and North America, but the driving mechanisms are poorly understood. Here, we test if the significant increase in TOC (total organic carbon, 90-95% DOC) in three acid-sensitive catchments in Norway of 14 to 36% between 1985 and 2003 is related to climate, hydrology, and/or acid deposition. Catchment TOC export increased between 10 and 53%, which was significant at one site only. The seasonal variation in TOC was primarily climatically controlled, while the deposition of SO4 and NO3--negatively related to TOC--explained the long-term increase in TOC. We propose increased humic charge and reduced ionic strength--both of which increase organic matter solubility--as mechanistic explanations for the statistical relation between reduced acid deposition and increased TOC. Between 1985 and 2003, ionic strength decreased significantly at all sites, while the charge density of TOC increased at two of the sites from 1-2 meq g(-1) C to about 5 meq g(-1) C and remained constant at the third site at 5 meq g(-1) C. The solubility of organic matter is discussed in terms of the pH-dependent deprotonation of carboxylic groups and the ionic strength-dependent repulsion of organic molecules. 相似文献
16.
Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil 总被引:4,自引:0,他引:4
Weng L Temminghoff EJ Lofts S Tipping E Van Riemsdijk WH 《Environmental science & technology》2002,36(22):4804-4810
The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution. 相似文献
17.
Guo L Nordmark CE Spurlock FC Johnson BR Li L Lee JM Goh KS 《Environmental science & technology》2004,38(14):3842-3852
Transport of pesticides by surface runoff during rainfall events is a major process contributing to pesticide contamination in rivers. This study presents an empirical regression model that relates pesticide loading over time in the Sacramento River with the precipitation and pesticide use in the Sacramento River watershed. The model closely simulated loading dynamics of diazinon, simazine, and diuron during 1991-1994 and 1997-2000 winter storm seasons. The coefficients of determination for regression ranged from 0.168 to 0.907, all were significant at <0.001. The results of this study provide strong evidence that precipitation and pesticide use are the two major environmental variables dictating the dynamics of pesticide transport into surface water in a watershed. The capability of the statistical model to provide time-series estimates on pesticide loading in rivers is unique and may be useful fortotal maximum daily load (TMDL) assessments. 相似文献
18.
19.
Harvey RW Metge DW Mohanram A Gao X Chorover J 《Environmental science & technology》2011,45(8):3252-3259
Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 μm diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 μM linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 μM Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere's attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ζ, of -44 to -49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L(-1). The most hydrophilic (0.52 HI) and negatively charged (ζ -38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ζ. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer-term exposure to contaminant DOC. 相似文献
20.
Effect of alfalfa seed washing on the organic carbon concentration in chlorinated and ozonated water
The bioassays assimilable organic carbon (AOC) and coliform growth response are better indexes than biological oxygen demand to determine water quality and water's ability to support the growth of bacteria. Ozonated (5 mg/liter) and chlorinated tap water were used to wash alfalfa seeds for 30 min. After washing in the ozonated tap water, the AOC concentration increased 25-fold, whereas the dissolved ozone decreased to undetectable levels. The AOC levels for the chlorinated water after washing the seeds also increased. These increases are due to ozone's strong oxidizing ability to break down refractory, large-molecular-weight compounds, forming smaller ones, which are readily used as nutrient sources for microorganisms. This same phenomenon was observed when using ozone in the treatment of drinking water. The AOC value increased from 1,176 to 1,758 micrograms C-eq/liter after the reconditioned wastewater was ozonated. When the ozonated wastewater was inoculated with Salmonella serotypes, the cells survived and increased generation times were observed. The increased nutrients would now become more readily available to any pathogenic microorganisms located on alfalfa seed surface as seen with the increase in the inoculated levels of Salmonella in the ozonated wastewater. If the washing process using ozonated water is not followed by the recommended hypochlorite treatment or continually purged with ozone, pathogen growth is still possible. 相似文献