首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Zn1?xErxO polycrystalline nanoparticles with various compositions (x=0.01,0.02,0.03,0.04,0.05, and 0.10)were prepared using sol–gel techniques, for which zinc acetate dihydrate and erbium 2–4 pentanedionate are used as precursors. Nanoparticles were pressed under a pressure of 4?tons for 5?min into disk-shaped compacts with 2?mm thicknesses and 10?mm diameters. The pressed samples were annealed at 400?°C for 30?min. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vickers microhardness analyses of the produced Er-doped ZnO bulk nanomaterials were performed. Specifically, in this study we focused on the analysis of their mechanical properties. Undoped and Er-doped bulk samples were investigated according to Meyer's law; the proportional sample resistance (PSR), elastic/plastic deformation (EPD), and indentation-induced cracking (IIC) models; and the Hays–Kendal (HK) approach. As a result, the IIC model was more suitable to determine the micromechanical properties and the reverse indentation size effect (RISE) behavior of Er-doped ZnO semiconductors.  相似文献   

5.
To study protons localization in H1.83K0.17La2Ti3O10·0.17H2O and their motional characteristics, complementary Nuclear Magnetic Resonance (NMR) techniques have been applied. 1H Magic Angle Spinning NMR evidences the presence of different proton containing species. By analyzing the temperature dependence of the 1H MAS NMR spectrum we attribute the observed lines to interlayer H+ in regular sites (isolated and in water rich environment), water protons and protons from various defects. The temperature behaviors of the spectral lines intensities and widths point out that intercalated water molecules are involved in translational motion that is confirmed by spin lattice relaxation rate (R1) and spin-lattice relaxation rate in rotating frame (R1ρ) measurements. It has been shown that for a correct determination of the proton motional parameters the Kohlrausch-Williams-Watts correlation function must be used. Its application results in the following parameters of proton motion in the interlayer space of H1.83K0.17La2Ti3O10·0.17H2O: Ea?=?0.194(2) eV, β?=?0.28(1), τ0=6.2(1)×10?10?s.  相似文献   

6.
High power impulse magnetron sputtering of a Ta target in various Ar+O2+N2 gas mixtures was utilized to prepare amorphous tantalum oxynitride (Ta–O–N) films with a finely controlled elemental composition in a wide range. We investigate the effect of film annealing at 900°C in vacuum on structure and properties of the films. We show that the finely tuned elemental composition in combination with the annealing enables the preparation of crystalline Ta–O–N films exhibiting a single TaON phase with a monoclinic lattice structure, refractive index of 2.65 and extinction coefficient of 2.0×102 (both at the wavelength of 550nm), optical band gap width of 2.45eV (suitable for visible light absorption up to 505nm), low electrical resistivity of 0.4Ωcm (indicating enhanced charge transport in the material as compared to the as-deposited counterpart), and appropriate alignment of the band gap with respect to the redox potentials for water splitting. These films are therefore promising candidates for application as visible-light-driven photocatalysts for water splitting.  相似文献   

7.
8.
9.
《Ceramics International》2022,48(17):24439-24453
Lead-free multiferroic 3–0 type particulate composites with a composition (1?x)(Ba0.85Ca0.15Zr0.1Ti0.9O3) – x(Ni0.7Zn0.3Fe2O4) [(1?x)BCZT – xNZFO with 0 ≤ x ≤ 100 at%] were prepared using solid state reaction method. Structural and microstructural analysis using XRD, FESEM and Raman techniques confirmed the phase formation of the ferroelectric (BCZT) and magnetostrictive (NZFO) phases without any detectable presence of impurity phases. Rietveld refinement of the XRD data revealed a tetragonal (P4mm) and a cubic structure (Fd3m) for the BCZT and NZFO phases, respectively. Elemental compositions of the constituent phases were assessed by EDS and XPS analyses. Electrical, magnetic, and magnetoelectric (ME) measurements were performed. The composites exhibit typical well-saturated magnetic hysteresis (M?H) loops at room temperature, having very low coercive field (HC) values, indicating their soft ferromagnetic behavior. Various parameters extracted from the M?H curves including HC, magneto-crystalline anisotropy, squareness, and magnetization were found to depend on x. Frequency dependence of capacitance and admittance exhibited a resonance behavior corresponding to the radial mode of the electromechanical resonance (EMR). ME coefficients were studied in both longitudinal (αE33) and transverse (αE31) modes. The highest coupling coefficients, αE31 ~14.5 mV/Oe.cm and αE33 ~13 mV/Oe.cm were obtained for composite with 50 at% NZF at off-resonance frequency of 1 kHz. At the EMR frequency of 314 kHz, the αE31 value in 0.5BCZT-0.5NZFO composite enhanced enormously to ~5.5 V/Oe.cm. The studies conclude that x = 0.5 is an optimum atomic fraction of NZFO in the particulate composite for maximum ME coupling.  相似文献   

10.
《Ceramics International》2021,47(18):25229-25235
We report the single crystal growth and characterization of the quasi-one-dimensional superconductor Li0.9Mo6O17 via temperature-gradient flux method. The grown single crystals show a clear ab plane identified by the x-ray diffraction (XRD) pattern. Temperature dependent resistivities reveal a metallic to semiconducting crossover at TM = 24 K followed by a superconducting transition at Tc = 2.2 K for ρa and ρc. In addition, the upper critical fields demonstrate a large anisotropy with Hc2b>Hc2a>Hc2c both at ρa and ρc. Particularly, an upper critical field Hc2b of about 16.2 T at zero temperature limit was deduced from the field dependence of resistivity measurements, which is notably larger than the estimated Pauli paramagnetic limit 3.1 T and supports the existence of the spin-triplet superconducting pairing and unconventional superconductivity in Li0.9Mo6O17. The XRD, resistivities and upper critical field measurements all imply a high quality of the as-grown Li0.9Mo6O17 samples. Furthermore, the interlayer and in-plane magnetoresistivity (MR) up to 60 T reveal the possible phase transition driven by the density-wave gap suppression and Zeeman split effect in the high field state.  相似文献   

11.
Currently, there is an urgent need of extraordinary comprehensive pyroelectric materials for the wide application in detectors and energy harvesters. In this study, the (Pb1–1.5xLax)(Zr0.86Ti0.14)O3 (abbreviated as PLZT, x?=?0.02, 0.03, 0.04 and 0.05) ceramics located in ferroelectric-antiferroelectric (FE-AFE) phase boundary were designed and synthesized by using conventional solid-state reaction method. The microstructures, phase structures, dielectric, ferroelectric, thermal depolarization and pyroelectric properties of the PLZT ceramics with different La content were investigated thoroughly. The XRD results show that the PLZT ceramics change from FE phase to AFE phase with increasing La content. The significant improvement of pyroelectric coefficient p and figures of merit (FOMs) are achieved in the PLZT ceramics with the increase in La content because of the increased metastable ferroelectric phase under the application of electric field. The (Pb0.955La0.03)(Zr0.86Ti0.14)O3 (x?=?0.03) ceramic exhibits not only high p of 5.2×10?8C/cm2K and high depolarization temperature (Td) of 179?℃ but also excellent FOMs with Fi=2.2×10?10m/V, Fv=5.0×10?2m2/C, and Fd=3.47×10?5Pa?1/2. In addition, the highest p of 6.8×10?8C/cm2K is achieved in (Pb0.94La0.04)(Zr0.86Ti0.14)O3 (x?=?0.04) ceramic. These results demonstrate that the PLZT ceramics of x?=?0.03 and 0.04 are promising candidates for pyroelectric applications.  相似文献   

12.
《Ceramics International》2023,49(16):26226-26245
Highly crystalline and single phase BaGd2xDyxO4 (0.00 x 0.16) phosphors, with an average crystallite size around 126 nm, have been synthesised using solid-state reaction technique. The structural and optical properties of these phosphors have been studied in detail to establish an unambiguous correlation between these properties. High-angle annular dark field (HAADF) images have confirmed that the constituent elements are homogeneously distributed in the particles, and their elemental composition has been established using X-ray photoelectron spectroscopy (XPS). The tuning of optical band gap with x has been achieved, which is a rare achievement in these phosphors. Also, the optimum concentration of Dy3+ ions has been found to be 0.8 mol%, which is the lowest among the Dy3+ doped BaGd2O4 phosphors reported so far. This concentration quenching effect has been discussed on the basis of a combination of decay curve analysis, calculation of average critical distance between the Dy3+ ions and integrated intensities of photoluminescence (PL) emission bands. The average crystallite size and optical band gap has also been found to decrease after x = 0.016, from which their correlation with concentration quenching effect has been investigated. The asymmetry ratio between the integrated intensities of yellow and blue PL emission bands has been observed to be greater than 2 throughout x, which confirmed the preferential lattice site for Dy3+ ions in these phosphors with present synthesis conditions. The variation of asymmetry ratio and Gd3+-dominated IR-active lattice vibrations with x, and Vegard’s law pertaining to the volume of a unit cell confirms that the local bonding environment in the lattice of these phosphors gets modified at x = 0.016. The photometric parameters for these phosphors reveal their suitability for fabrication of warm light orange LEDs on appropriate UV chips.  相似文献   

13.
14.
《Ceramics International》2022,48(15):21221-21234
In this work, the Pechini method was used to synthesize La0.7?xLnxCa0.3MnO3,(Ln=ProrSm)-La1?xLnxCa0.3MnO3 type perovskites, evaluating the effect of the type of cation and composition on the structural, morphological and textural properties. The use of similar rare earth cations was studied to promote weak bonds between the reactive surface and adsorbed oxygen species that could facilitate the oxygen reduction reaction and thus improve electrochemical performance of SOFC devices. To achieve this goal, different compositions of Pr or Sm ions (x = 0.1, 0.3, 0.5 or 0.6) were used for the partial substitution of lanthanum at the A site. The results indicated that the substitution of La by Pr or Sm did not modify the original orthorhombic perovskite structure of Ca-doped lanthanum manganites. However, a shift in the main reflections can be obtained as the content of both cations increases due to cell distortion. Rietveld refinement confirms that the crystal structure belongs to the Pnma space group with a large distortion along the b-axis but no secondary phase formation. The compensated charge neutrality of the Mn3+/Mn4+ ratio influences the octahedral sites of MnO6 and cell volume. Orthorhombic distortion (c2<a<b) occurs through Jahn-Teller mechanism promoting a hole-doped system for electrical conductivity. The adsorption-desorption isotherms reveal that in any composition of Pr, a mesoporous isotherm (type IV) is obtained. In contrast, the isotherms changed from micro- to meso-porous features depending on the amount of Sm substitution at the A-site. All the prepared samples showed a soft granular structure with agglomerates ranging between 200 and 300 nm with well-interconnected pores. Comparing the La substitution by Pr or Sm, it was found that Sm can form perovskites that can better promote oxygen vacancies and triple boundary phase formation, which is essential in SOFC devices.  相似文献   

15.
16.
Co-Mg ferrites, CoxMg1?yFe2?zO4 (x?=?0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, 0?<?y?<?0.34 and 0?<?z?<?0.67), were synthesized via a standard ceramic route, and the structural, morphological, magnetic properties and transmission parameter of the samples were studied. The thermal behavior of the ground powder was characterized using a differential thermal analysis technique (DTA). The XRD patterns proved the formation of single phase Mg-ferrite in the samples with "x" contents varying from 0.0 to 0.8. The sample with x?=?1.0 showed two phases: a spinel Mg-ferrite and a secondary (Co,Mg)O phase. The lattice parameter and crystallite size of the samples increased remarkably by increasing the x content. The SEM images revealed that Co substitution in Mg ferrite at x?=?0.2 causes the particle growth, but their growth was not significant until x?=?0.8. For x?=?1.0, a remarkable particle growth was again observed. A maximum bulk density of 4.94?g/cm3 was obtained for x?=?0.8. Magnetic properties of the sintered samples showed an increase in coercive force up to 113?Oe by increasing Co substitution up to x?=?1.0. Saturation magnetization reached a maximum value of ~45.40?emu/g at x?=?0.8. Studying the microwave transmission behavior of the samples, using a vector network analyzer (VNA), indicated that by increasing Co, the transmission loss was reduced from ~??15?dB for x?=?0.0 to less than ??10?dB for x?=?0.8 in the frequency range of 8–12?GHz.  相似文献   

17.
The effect of chloride ions on the properties of Er3+-doped fluorozirconate glass is systematically studied. We first observed a nonlinear mutation of the glass-forming abilities and fluorescence properties of glass when 1?mol% fluoride ions were replaced by chloride ions. The results differed from previous reports. In order to explain this special phenomenon, we investigated the changes of the structure and the Judd-Ofelt theory of glass before and after halogen anion substitution. The results indicate that part of the fluorozirconium octahedral network was destroyed and transformed into a chain structure due to the bridging chlorine atoms, of which the electronegativity is lower than F-. With the increase of Cl-, the glass-forming abilities gradually recovered due to the decrease of the liquid's temperature. Therefore, a non-linear mutation of the glass-forming abilities was exhibited. Furthermore, the predictor χ, the ratio between the Judd–Ofelt parameters Ω4 and Ω6, and the reduction in phonon density caused a mutation on the fluorescence properties of glass, such as the intensity and lifetime. This research could provide a new reference for the anion modification of fluoride glass.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号