首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-flooded mulching cultivation (NFMC) for lowland rice, as a novel water-saving technique, has been practiced in many areas of China since the 1990s. However, the information on NFMC effects on crop production, nitrogen and water use in rice–wheat rotations is still limited. A field experiment using 15N-labeled urea was conducted to evaluate the impacts of NFMC on crop yield, fertilizer N recovery and water use efficiency in rice–wheat rotations. Plastic film mulching (PM), and wheat straw and plastic film double mulching (SPM) resulted in the same rice grain yield (7.2 t ha–1) while wheat straw mulching (SM) and no mulching (NM) led to 5 and 10% yield reduction, compared with rice under traditional flooding (TF). In the rice–wheat rotation, crop productivity in PM, SM or SPM was comparable to that in TF but greater than in NM. Weed growth and its competition with rice for nitrogen were considered the main reason that led to yield decline in NM. Compared with TF, NFMC treatments did not obviously affect fertilizer N recoveries in plant and soil in both rice and wheat seasons. The total fertilizer N recoveries in crop, weed and soil in all treatments were only 39–44% in R–W rotations, suggesting that large N losses occurred following one basal N application for each growing season. Water use efficiency, however, was 56–75% greater in NFMC treatments than in TF treatment in the R–W rotation. The results revealed that NFMC (except NM) can produce comparable rice and wheat yields and obtain similar fertilizer N recovery as TF with much less water consumption.  相似文献   

2.
The sustainability of the productive rice-wheat systems of Northwest India is being questioned due to the complete removal of straw for animal consumption and fuel, or the burning of straw which has reduced the soil organic matter contents. However, straw incorporation at planting can temporarily reduce the availability of fertilizer-N and reduce crop yields. In a field study on a loamy sand soil, the effect of 6 mg ha−1 rice straw incorporated into the soil 20 or 40 days before sowing (DBS) the wheat was compared with removal or burning of rice straw on the fate and balance of 120 kg ha−1 of 5 atom% 15N-urea applied to wheat and to a following crop of rice. Wheat grain yield and agronomic efficiency (AE) of applied N (kg grain/kg N applied) were not influenced by rice straw management. However, N uptake (NU), and recovery efficiency (RE) of N by the difference method were lower with rice straw incorporation than with burning. Nitrogen-15 recovery by wheat was highest (41%) when the rice straw was removed or burned and lowest (30.4%) when 30 of the 120 kg N ha−1 was applied at the time of straw incorporation at 20 DBS of wheat. However, this strategy of adding 25% of the urea-N dose at the time of straw incorporation resulted in the highest 15N losses (45.2%). Inorganic N remaining at harvest in the 0 to 60 cm soil profile, mostly NO3 , was 5.5% after wheat and 4.2% after rice. Rice grain yields, NU, and RE were not influenced by rice straw management. Nitrogen-15 losses were similar in rice and wheat (31% with straw removed) despite total irrigation and rainfall inputs of 340 and 32 cm to rice and wheat, respectively. These results suggest to the farmers of northwest India that straw incorporation does not necessarily hurt grain yields, and indicates to researchers that work is still needed to improve N use efficiency in rice and wheat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Application of higher levels (60 and 90 kg N ha–1) of nitrogen fertilizer (Urea) inhibited the growth ofAzolla pinnata (Bangkok) and blue-green algae (BGA) though the reduction was more in BGA thanAzolla. Inoculation of 500 kg ha–1 of freshAzolla 10 days after transplanting (DAT) in the rice fields receiving 30, 60 and 90 kg N ha–1 as urea produced an average of 16.5, 15.0 and 13.0 t ha–1 fresh biomass ofAzolla at 30 DAT, which contained 31, 31 and 27 kg N ha–1, respectively. The dry mixture of BGA (60%Aulosira, 35%Gloeotrichia and 5% other BGA on fresh weight basis) inoculated in rice field 3 DAT at a rate of 10 kg ha–1 showed a mat formation at 80 DAT with an average fresh biomass of 8.0, 5.8 and 4.2 t ha–1 containing 22, 17 and 12 kg N ha–1, respectively with those N fertilizer doses.Application ofAzolla showed positive responses to rice crop by increasing the panicle number and weight, grain and straw yields and nitrogen uptake in rice significantly at all the levels of chemical nitrogen. But, the BGA inoculation had a significant effect on the grain and straw yields only during the dry season in the treatment where 30 kg N was applied. During the wet season and in the other treatments performed during the dry season no significant increase in yields, yield components and N uptake were observed with BGA.The intercropping ofAzolla and rice in combination with 30, 60 and 90 kg N ha–1 as urea showed the yields, yield attributes and nitrogen uptake in rice at par with those obtained by applying 60, 90 and 120 kg N ha–1 as urea, respectively but, the BGA did not. The analysis of soil from rice field after harvest showed thatAzolla and BGA intercropping with rice in combination with chemical fertilizer significantly increased the organic carbon, available phosphorus and total nitrogen of soil.  相似文献   

4.
Development of a sustainable and environment friendly crop production system depends on identifying effective strategies for the management of tillage and postharvest crop residues. Three-year (2004–2007) field study was initiated on two soil types to evaluate the effect of straw management (burning, incorporation and surface mulch) and tillage (conventional tillage and zero tillage) before sowing wheat and four nitrogen rates (0, 90, 120 and 150 kg N ha−1) on crop yields, N use efficiency, and soil fertility in the northwestern India. Effect of tillage and straw management on nitrogen transformation in soils was investigated in a laboratory incubation study. In sandy loam, grain yield of wheat with straw mulch-zero-till (ZT) was 7% higher compared to when residues were burnt-ZT but it was similar to straw burnt-conventional till (CT), averaged across 3 years. In silt loam, grain yield of wheat with straw mulch-ZT was 4.4% higher compared to straw incorporated-CT, but it was similar to straw burnt-CT. Response to N application was generally observed up to 150 kg N ha−1 except in 2004–2005 on sandy loam where N response was observed up to 120 kg N ha−1, irrespective of straw and tillage treatments. In sandy loam, RE was lower (49%) for straw burnt-ZT than in other treatments (54–56%). In silt loam, RE was higher in straw mulch-ZT compared with straw incorporation-CT (65 vs. 58%). In sandy loam, AE was higher in straw burnt-CT and straw mulch-ZT compared with the other treatments (19.2 vs. 16.9 kg grain kg−1 N applied). In silt loam, AE was lower in straw incorporation-CT than in other treatments (16.0 vs. 17.6 kg grain kg−1 N applied). Rice yield and N uptake were not influenced by straw and tillage management treatments applied to the preceding wheat. Recycling of rice residue (incorporation and surface mulch) compared with straw burning increased soil organic carbon and the availability of soil P and K. There was more carbon sequestration in rice straw mulch with zero tillage (25%) than in straw incorporation with conventional tillage (17%). Soil N mineralization at 45 days after incubation was 15–25% higher in straw retention plots compared with on straw burnt plots.  相似文献   

5.
Field studies were conducted for two years on a rapidly percolating loamy sand (Typic Ustochrept) to evaluate the effect of green manure (GM) on the yield,15N recovery from urea applied to flooded rice, the potential for ammonia loss and uptake of residual fertilizer N by succeeding crops. The GM crop ofSesbania aculeata was grownin situ and incorporated one day before transplanting rice. Urea was broadcast in 0.05 m deep floodwater, and incorporated with a harrow. Green manure significantly increased the yield and N uptake by rice and substituted for a minimum of 60 kg fertilizer N ha–1. The recovery of fertilizer N as indicated by15N recovery was higher in the GM + urea treatments. The grain yield and N uptake by succeeding wheat in the rotation was slightly higher with GM. The recovery of residual fertilizer N as indicated by the15N recovery in the second, third and fourth crops of wheat, rice and wheat was only 3, 1 and 1 per cent of the urea fertilizer applied to the preceding rice crop. Floodwater chemistry parameters showed that the combined use of the GM and 40 kg N ha–1 as urea applied at transplanting resulted in a comparatively higher potential for NH3 loss immediately after fertilizer application. The actual ammonia loss as suggested by the15N recoveries in the rice crop, however, did not appear to be appreciably larger in the GM treatment. It appeared the ammonia loss was restricted by low ammoniacal-N concentration maintained in the floodwater after 2 to 3 days of fertilizer application.  相似文献   

6.
A two year field experiment was carried out at the Indian Agricutural Research Institute, New Delhi - 110012, India to assess the effect of mungbean (Vigna radiata L.) and uridbean (Vigna mungo L.) residues on the yield and N uptake of a succeeding wheat crop as compared to sorghum fodder. Sorghum produced 3.5–7.5 times more dry matter and removed 2–3 times more nitrogen than mungbean or uridbean during same duration (80 ± 10 days) of their growth. Without N application the grain yield of wheat following mungbean and uridbean (without residue incorporation) was 0.45 and 0.48 t ha–1 more than the yield of wheat following sorghum fodder. These yields were equivalent to that predicted when 36 and 38 kg urea-N ha–1, respectively, was directly applied to wheat. The residual effects of these grain legumes were higher when succeeding wheat was fertilized with 60 kg urea-N ha–1; at this level mungbean and uridbean spared 52 and 43 kg urea-N ha–1, respectively, in succeeding wheat. The residual effect of mungbean and uridbean further increased when their residue was incorporated in soil; with this practice they spared 94 and 115 kg urea-N ha–1, respectively, without N application to wheat and 74 and 82 kg urea-N ha–1, respectively, with an application of 60 kg urea-N ha–1 to wheat.Mungbean and uridbean, without residue incorporation, increased aboveground plant-N uptake of succeeding wheat by 11.5–34.9 and 10.8–34.0 kg N ha–1, respectively; whereas with residue incorporation, they increased aboveground plant-N content of succeeding wheat by 26.1–45.8 and 32.7–47.7 kg N ha–1, respectively.The results of the present study indicate that there is both an indirect sparing effect and a direct residual effect of mungbean and uridbean on the nitrogen needs of succeeding wheat, more so when their residues are incorporated in soil.  相似文献   

7.
Ammonium sulfate and potassium nitrate added as a top dressing and rice straw were incorporated into soil to understand their effect on the chemical nature of the paddy soil and on the growth and yield of rice plants during two successive crop seasons. Redox potential (Eh) determination indicated that the paddy soil appeared to be the reduced form in mixture with rice residues. The amounts of ammonium nitrogen (NH4 +—N) and nitrate nitrogen (NO3 —N) were significantly higher in the second crop than in the first crop, and the quantity of NH4 +—N was about 10 times greater than that of NO3 —N. The incorporation of rice straw decreased both the available nitrogen and the soil cations, Zn2+, Cu2+, Ca2+, Mn2+, and Na+. The quantity of Zn2+, Cu2+, Mg2+, and Na+ was significantly lower in the second crop that that in the first. The growth and yield of rice plants were significantly affected by cultural treatment; thus the ammonium sulfate dressing treatment resulted in higher yields than the potassium nitrate treatment. The NH4 +—N treatment had an antagonistic effect on the phytotoxic nature of rice straw decomposed in soil. The phytotoxicity (primarily phenolic type compounds) of aqueous extracts of soil varied between treatments and was significantly higher in the soil which had been mixed with rice straw. This finding correlated well with the higher amounts of phytotoxic plant phenolics produced by the decomposing rice residues in the soil.This study was supported by the National Science Council of the Republic of China.Paper No. 215 of the Scientific Journal Series, Institute of Botany, Academia Sinica.  相似文献   

8.
Field experiments were conducted in Central Thailand under a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1998 to determine the impact of residue management on fertilizer nitrogen (N) use. Treatments consisted of a combination of broadcast urea (70 kg N ha–1) with rice straw (C/N 67) and rice hull ash (C/N 76), which were incorporated into the puddled soil 1 week before transplanting at a rate of 5 Mg ha–1. Nitrogen-15 balance data showed that the dry season rice recovered 10 to 20% of fertilizer N at maturity. Of the applied N, 27 to 36% remained in the soil. Loss of N (unaccounted for) from the soil–plant system ranged from 47 to 54% of applied N. The availability of the residue fertilizer N to a subsequent rice crop was only less than 3% of the initial applied N. During both season fallows NO3-N remained the dominant form of mineral-N (NO3+NH4) in the aerobic soil. In the dry season grain yield response to N application was significant (P=0.05). Organic material sources did not significantly change grain yield and N accumulation in rice. In terms of grain yields and N uptake at maturity, there was no significant residual effect of fertilizer N on the subsequent rice crop. The combined use of organic residues with urea did not improve N use efficiency, reduced N losses nor produced higher yields compared to urea alone. These results suggested that mechanisms such as N loss through gaseous N emissions may account for the low fertilizer N use efficiency from this rice cropping system. Splitting fertilizer N application should be considered on the fertilizer N use from the organic residue amendment.  相似文献   

9.
The investigation evaluated the productivity of plantain intercropped with cassava, cocoyam and yam, fertilized annually with 0, 320 and 480 kg N ha–1 respectively. Yields from nitrogen fertilized intercrops were higher than those of unfertilized treatments. In plantain + cassava intercrop receiving 480 kg N ha–1 plantain growth was suppressed. Plantain intercropped with yam and fertilized with 320 kg N ha–1 matured early and produced better bunches than other treatments. Plantain + yam or cocoyam intercropping systems fertilized with 320 kg N ha–1 were recommended because of improved plantain establishment and increased combined crop yields.  相似文献   

10.
Four crop rotation and management systems were studied in 1994 and 1995 in relation to growth and yield of irrigated processing tomatoes (Lycopersicon esculentum Mill.). The four treatments were three four-year rotation systems [conventional (conv-4), low input and organic] and a two-year rotation system [conventional (conv-2)]. The four-year rotation was tomato-safflower-corn-wheat(or oats+vetch)/beans, and the two-year rotation was tomato-wheat. Purple vetch (Vicia sativa L.) was grown as a green manure cover crop preceeding tomatoes in the low input and organic systems. Nitrogen was supplied as fertilizer in the conventional systems, as vetch green manure plus fertilizer in the low input system and as vetch green manure plus turkey manure in the organic system. Tomato cv. Brigade was direct-seeded in the conventional systems and transplanted to the field in the low input and organic systems. In both years the winter cover crop was composed of a mixture of vetch and volunteer oats with N contents of 2.2% in 1994 and 2.7% (low input) or 1.8% (organic) in 1995. In 1994 yields were higher in conventionally grown tomatoes because a virus in the nursery infected the transplants used in the low input and organic systems. In 1995 tomatoes grown with the low input and conv-4 systems had similar yields, which were higher than those of tomatoes grown with the conv-2 and organic systems. N uptake by the crop was greater than 200 kg N ha–1 for high yield (> 75 t ha–1) and uptake rates of 3 to 6 kg N ha–1 day–1 during the period of maximum uptake were observed. The lower yield with the organic system in 1995 was caused by a N deficiency. The main effect of the N deficiency was a reduced leaf area index and not a reduction of net assimilation rate (NAR) or radiation use efficiency (RUE). Nitrogen deficiency was related to low concentration of inorganic N in the soil and slow release of N from the cover crop + manure. A high proportion of N from the green manure but only a low proportion of N from the manure was mineralized during the crop season. In the conventional systems, the estimated mineralized N from the soil organic matter during the crop season was around 85 kg ha–1. A hyperbolic relationship between N content and total dry weight of aboveground biomass was observed in procesing tomatoes with adequate N nutrition. Lower yields with the conv-2 than with the conv-4 system were due to higher incidence of diseases in the two year rotation which reduced the NAR and the RUE. Residual N in the soil in Oct. (two months after the incorporation of crop residues) ranged between 90 and 170 kg N ha–1 in the 0–90 cm profile.Department of Vegetable Crops.  相似文献   

11.
Field studies on the substitution of N and P fertilizers with farm yard manure (FYM) and their effect on the fertility status of a loamy sand soil in rice—wheat rotation are reported. The treatments consisted of application of 12 t FYM ha–1 in combination with graded levels of N and P. Application of fertilizer N, FYM and their different combinations increased the rice yield significantly. There was no significant response to P application. The magnitude of response to the application of 12 t FYM and its combined use with each of 40 kg and 80 kg N ha–1 was 0.7, 2.2 and 3.9 t ha–1 respectively. Application of 120 kg N ha–1 alone increased the yield by 3.9 t ha–1, and was comparable to rice yield obtained with 80 kg N and 12 t FYM ha–1. This indicated that 12 t FYM ha–1 could be substituted for 40 kg N as inorganic fertilizer in rice. In addition FYM gave residual effects equivalent to 30 kg N and 13.1 kg P ha–1 in the succeeding wheat. The effect of single or combined use of inorganic fertilizers and FYM was significantly reflected in the build up of available N, P, K and organic carbon contents of the soil. The relationship for predicting rice yield and nutrients uptake were also computed and are discussed.  相似文献   

12.
Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha–1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha–1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha–1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha–1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.  相似文献   

13.
Poultry manure applied alone or in combination with urea at different N levels was evaluated as a N source for wetland rice grown in a Fatehpur loamy sand soil. Residual effects were studied on wheat which followed rice every year during the three cropping cycles. In the first year, poultry manure did not perform better than urea but by the third year, when applied in quantities sufficient to supply 120 and 180 kg N ha–1, it produced significantly more rice grain yield than the same rates of N as urea. Poultry manure sustained the grain yield of rice during the three years while the yield decreased with urea. Apparent N recovery by rice decreased from 45 to 28% during 1987 to 1989 in the case of urea, but it remained almost the same (35, 33 and 37%) for poultry manure. Thus, urea N values of poultry manure calculated from yield or N uptake data following two different approaches averaged 80, 112 and 127% in 1987, 1988 and 1989, respectively. Poultry manure and urea applied in 1:1 ratio on N basis produced yields in between the yields from the two sources applied alone. After three cycles of rice-wheat rotation, the organic matter in the soil increased with the amount of manure applied to a plot. Olsen available P increased in soils amended with poultry manure. A residual effect of poultry manure applied to rice to supply 120 or 180 kg N ha–1 was observed in the wheat which followed rice and it was equivalent to 40 kg N ha–1 plus some P applied directly to wheat.  相似文献   

14.
Crop residue management to sustain soil fertility and irrigated rice yields   总被引:4,自引:0,他引:4  
Field experiments were conducted on a sandy clay loam soil (deep aquic ustorthent) for five consecutive seasons from wet season (WS) 1998 to WS 2000 with a permanent layout at the Directorate of Rice Research (DRR) farm, ICRISAT campus, India, to study the influence of incorporation of rice straw residues alone or in combination with in situ grown green manure (GM) and straw burning on soil fertility, irrigated rice productivity and pest incidence in comparison with only fertiliser application (control). The residue treatments received uniform doses of N, K, Zn at the same level as that in control plots. The crop residue treatments favourably influenced some of the soil parameters over control. Recycling of crop residues by incorporation or burning increased soil available K and organic carbon significantly over control, while total N content increased by residue incorporation. Bulk density decreased with residue incorporation as compared to control and burning treatments. Yellow stem borer was the only pest observed, with higher white ear damage recorded during wet seasons ranging from 14.2–31.3% in 1999 and 16.8–29.7% in 2000. The damage was higher with straw + green manure, apparently reflecting the quantum of N applied through crop residues and fertilisers. The influence of crop residue treatments on yield parameters like panicle and spikelet number was more apparent after two cycles of residue incorporation, recording significant effects on rice productivity in the dry and wet seasons of 2000. Rice yield increased by 1.0 to 1.2 t/ha in DS and 0.4 to 0.8 t/ha in WS.  相似文献   

15.
Yield response of dryland wheat to fertilizer N application in relation to components of seasonal water (available soil moisture and rainfall) and residual farm yard manure (FYM) was studied for five years (1983–84 to 1987–88) on a maize-wheat sequence on sandy loam soils in Hoshiarpur district of Punjab, India. Four rates of N viz. 0, 40, 60 and 80 kg ha–1 in wheat were superimposed on two residual FYM treatments viz. no FYM (F0) and 15 t ha–1 (F15) to preceding maize. FYM application to maize increased the residual NO3-N content by 19–30 kg ha–1 in the 180 cm soil profile. For a given moisture distribution, F15 increased attainable yields. Over the years, F15 increased wheat yield by 230 to 520 kg ha–1. Response to fertilizer N was lower in FYM amended plots than in unamended plots. Available soil moisture at wheat seeding and amount and distribution of rainfall during the vegetative and the reproductive phases of crop development affected N use efficiency by wheat. Available soil moisture at seeding alone accounted for 50% variation in yield. The residual effect of FYM on wheat yield could be accounted for by considering NO3-N in 180 cm soil profile at seeding. The NO3-N and available soil moisture at wheat seeding along with split rainfall for two main phases of crop development and fertilizer N accounted for 96% variation in wheat yield across years and FYM treatments.  相似文献   

16.
Understanding mulching influences on nitrogen (N) activities in soil is important for developing N management strategies in dryland. A 3 year field experiment was conducted in the Loess Plateau of China to investigate the effects of mulching, N fertilizer application rate and plant density on winter wheat yield, N uptake by wheat and residual soil nitrate in a winter wheat-fallow system. The split plot design included four mulching methods (CK, no mulch; SM, straw mulch; FM, plastic film mulch; CM, combined mulch with plastic film and straw) as main plot treatments. Three N fertilizer rates (N0, 0 kg N ha−1; N120, 120 kg N ha−1; N240, 240 kg N ha−1) were sub-plot treatments and two wheat sowing densities (LD, low density, seeding rate = 180 kg ha−1; HD, high density, seeding rate = 225 kg ha−1) were sub-subplot treatments. The results showed that wheat yield, N uptake, and N use efficiency (NUE) were higher for FM and CM compared to CK. However, soil nitrate-N contents in the 0–200 cm soil profile were also higher for FM and CM compared to CK after the 3 year experiment. Wheat grain yields were higher for SM compared to CK only when high levels of nitrogen or high planting density were applied. Mulching did not have a significant effect on wheat yield, nitrogen uptake and NUE when soil water content at planting was much high. Wheat yield, N uptake, and residual nitrate in 0–200 cm were significantly higher for N240 compared to N120 and N0. Wheat yield and N uptake were also significantly higher for HD compared to LD. When 0 or 120 kg N ha−1 was applied, HD had more residual nitrate than LD while the reverse was true when 240 kg N ha−1 was applied. After 3 years, residual nitrate-N in 0–200 cm soil averaged 170 kg ha−1, which was equivalent to ~40% of the total N uptake by wheat in the three growing seasons.  相似文献   

17.
Methane Emission from Deepwater Rice Fields in Thailand   总被引:4,自引:0,他引:4  
Field experiments were conducted in the Prachinburi Rice Research Center (Thailand) from 1994 to 1998. The major objective was to study methane (CH4) emission from deepwater rice as affected by different crop management. Irrigated rice was investigated in adjacent plots, mainly for comparison purposes. The 4-yr average in CH4 emission from deepwater rice with straw ash (burned straw) treatment was 46 mg m–2d–1 and total emission was 98 kg ha–1 yr–1. For irrigated rice, the average emission rate and total emission for the straw ash treatment was 79 mg m–2 d–1 and 74 kg ha–1 yr–1, respectively. Low emission rates may partially be related to acid sulfate soil of the experimental site. Without organic amendment, the seasonal pattern of CH4 emission from deepwater rice was correlated with an increase in biomass of rice plants. Emission rates from deepwater rice depend on the production of biomass and the straw management as well. Methane emission was greatest with straw incorporation, followed by straw compost incorporation, zero-tillage with straw mulching, and least with straw ash incorporation. The seasonal pattern of CH4 ebullition in deepwater rice was consistent with seasonal emission, and total ebullition corresponded to 50% of total emission. Dissolved CH4 concentrations in the surface soil (0–5 cm) were similar to those in the subsoil (5–15 cm), and the seasonal fluctuation of dissolved CH4 was also consistent with the seasonal CH4 emission. Increase in plant density and biomass of irrigated rice grown by pregerminated seed broadcasting enhanced CH4 emission as compared with transplanting.  相似文献   

18.
To evaluate the response of dryland wheat (Triticum aestivum L.) to mulching in preceding maize and fertilizer N application field experiments were conducted for six years (1980–86) with maize-wheat sequence on a sandy loam soil in northern India. Four rates of N application viz. 0, 40, 60 and 80 kg N ha–1 in wheat were combined with three mulch treatments viz. no mulch (M0), paddy straw mulch (Mp) and basooti (Premma mucronate) mulch (Mb) applied at the rate of 4 tons ha–1 on dry weight basis applied three weeks before harvest of maize. Mulching (Mp and Mb) increased (profile) stored moisture at wheat seedling by 31 to 88 mm. Mb also increased NO3-N content by 33 to 42 kg ha–1 in 0–120 cm profile over M0 and Mp. Over the years, Mp increased wheat yield by 11 to 515 kg ha–1 and Mb by 761 to 879 kg ha–1. Wheat yield response to mulching was related to rainfall pattern during its growth season. Significant response to mulching was obtained only in years when rainfall during vegetative phase of the crop was low. Amount and distribution of rainfall during two main phases of crop development affected the N use efficiency by wheat. On an average, each cm of rain substituted for 3.5, 4.6 and 6.5 kg of applied N ha–1 under M0, Mp and Mb, respectively. Split rainfall for two main phases of crop growth, available stored water at seeding, fertilizer N and profile NO3-N content accounted for 89 per cent variability in wheat yield across years and mulching treatments.  相似文献   

19.
Green manuring of rice with dhaincha (Sesbania aculeata) is widely practised under irrigated puddle-transplanted conditions. In flood-prone lowlands, the rice is established through direct seeding early in the season and flooding occurs after 1–2 months of crop growth following regular rains. The low yields are due to poor crop stands and difficulty in nitrogen management under higher depths of water. The effect of green manuring with dhaincha intercropped with direct-seeded rice vis-à-vis the conventional practice of incorporating pure dhaincha before transplanting was investigated under flood-prone lowland conditions (up to 50–80 cm water depth) at Cuttack, India. Treatment variables studied in different years (1992, 1994 and 1995) were: rice varieties of different plant heights, crop establishment through direct seeding and transplanting, varying length of periods before dhaincha incorporation, and urea N fertilizer levels. Dhaincha accumulated 80–86 kg N ha-1 in pure stand and 58–79 kg N ha-1 when intercropped with direct-seeded rice in alternate rows at 50 days of growth. The growth of rice improved after dhaincha was uprooted manually and buried in situ between the rice rows when water depth was 10–20 cm in the field. The panicle number was lower but the panicle weight was higher with dhaincha green manuring than with recommended level of 40 kg N ha-1 applied as urea. The grain yield was significantly higher with direct seeding than with transplanting due to high water levels (>60 cm) immediately after transplanting. Dhaincha manuring was at par with 40 kg N ha-1 as urea in increasing the yield of direct-seeded and transplanted crops. The highest yield of direct-seeded crop was obtained when 20 kg N ha-1 was applied at sowing and dhaincha was incorporated at 50 days of growth. The results indicate that green manuring of direct-seeded rice with intercropped dhaincha is beneficial for substituting urea fertilizer up to 40 kg N ha-1 and augmenting crop productivity under flood-prone lowland conditions.  相似文献   

20.
Maize is the primary food crop grown by farmers in the coastal savanna region of Togo and Benin on degraded (rhodic ferralsols), low in soil K-supplying capacity, and non-degraded (plinthic acrisols) soils. Agronomic trials were conducted during 1999–2002 in southern Togo on both soil types to investigate the impact of N and P fertilization and the introduction of a mucuna short fallow (MSF) on yield, indigenous N supply of the soil, N recovery fraction and internal efficiency of maize. In all plots, an annual basal dose of 100 kg K ha–1 was applied to the maize crop. Maize and mucuna crop residues were incorporated into the soil during land preparation. Treatment yields were primarily below 80% of CERES-MAIZE simulated weather-defined maize yield potentials, indicating that nutrients were more limiting than weather conditions. On degraded soil (DS), maize yields increased from 0.4 t ha–1 to 2.8 t ha–1 from 1999 to 2001, without N or P application, in the absence of MSF, with annual K application and incorporation of maize crop residues. Application of N and P mineral fertilizer resulted in yield gains of 1–1.5 t ha–1. With MSF, additional yield gains of between 0.5 and 1.0 t ha–1 were obtained at low N application rates. N supply of the soil increased from 10 to 42 kg ha–1 from 1999 to 2001 and to 58 kg N ha–1 with MSF. Application of P resulted in significant improvements in N recovery fraction, and greatest gains were obtained with MSF and P application. MSF did not significantly affect internal N efficiency, which averaged 45 kg grain (kg N uptake)–1. On non-degraded soils (NDS) and without N or P application, in the absence of MSF, maize yields were about 3 t ha–1 from 1999 to 2001, with N supply of the soil ranging from 55 to 110 kg N ha–1. Application of 40 kg P ha–1 alone resulted in significant maize yield gains of between 1.0 (1999) and 1.5 (2001) t ha–1. Inclusion of MSF did not significantly improve maize yields and even reduced N recovery fraction as determined in the third cropping year (2001). Results illustrate the importance of site-specific integrated soil fertility management recommendations for the southern regions of Togo and Benin that consider indigenous soil nutrient-supplying capacity and yield potential. On DS, the main nutrients limiting maize growth were N and probably K. On NDS, nutrients limiting growth were mainly N and P. Even on DS rapid gains in productivity can be obtained, with MSF serving as a means to allow farmers with limited financial means to restore the fertility of such soils. MSF cannot be recommended on relatively fertile NDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号