首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
在机动目标跟踪与定位中,结合EKF和自适应理论的优点和目标跟踪的非线性特征,提出了一种非线性系统的基于“当前”统计模型的自适应扩展卡尔曼滤波算法,根据机动目标的测量信息修正加速度方差,消除随机误差和噪声的干扰,提高预测的精度。通过Monte Carlo对比仿真实验表明该算法正确有效,定位精度较高,滤波效果得到改善,同时增强了稳定性,优于一般的EKF和MVEKF算法,为机动目标精确跟踪与定位的实现提供一种新的方法。  相似文献   

2.
针对机动目标跟踪过程观测矩阵病态导致扩展卡尔曼滤波算法跟踪效果不佳的问题,提出一种自适应渐消有偏扩展卡尔曼滤波算法。该算法以扩展卡尔曼滤波为基本框架,并借鉴Gauss-Markov模型的思想以解决观测矩阵病态问题。算法根据状态估计均方误差最小条件求得有偏因子,以降低病态观测矩阵对滤波估计的影响;根据滤波发散判据提出一种新的渐消因子估计方法,以实时调整预测协方差矩阵,从而改善滤波增益并有效提高目标跟踪精度。仿真结果表明,改进算法比传统扩展卡尔曼滤波对目标跟踪的精度有较大提高,同时稳定性更好。  相似文献   

3.
自适应UKF算法在目标跟踪中的应用   总被引:14,自引:0,他引:14  
石勇  韩崇昭 《自动化学报》2011,37(6):755-759
针对目标跟踪中系统噪声统计特性未知导致滤波发散或者滤波精度不高的问题, 提出了一种自适应无迹卡尔曼滤波(Unscented Kalman filter, UKF)算法.该算法在滤波过程中,利用改进的Sage-Husa估 计器在线估计未知系统噪声的统计特性,并对滤波发散的情况进行判断和抑制, 有效提高了滤波的数值稳定性,减小了状态估计误差. 仿真实验结果表明,与标准UKF算法相比,自适应UKF算法明显改善了目标跟踪的精度和稳定性.  相似文献   

4.
强跟踪卡尔曼滤波在视频目标跟踪中的应用   总被引:1,自引:1,他引:1       下载免费PDF全文
针对经典卡尔曼滤波器在滤波数学模型与实际过程的数学规律不匹配、滤波特性较差的情况,提出利用强跟踪卡尔曼滤波器对视频序列图像中的运动目标进行跟踪。该方法是在经典卡尔曼滤波递推公式中的一步验前误差方差阵中引入可在线计算的时变渐消矩阵,从而调节增益K,使之能够不断变化,保证对新息序列的自适应调节,使状态滤波更准确。实验结果表明,较之经典卡尔曼滤波,该方法具有对运动目标更强的跟踪能力,跟踪精度更高,均方误差更小。  相似文献   

5.
基于自适应卡尔曼滤波的机动目标跟踪算法   总被引:1,自引:0,他引:1  
在机动目标跟踪过程中,由于目标运动的不确定性,雷达系统接收的数据存在噪声,使预置目标运动模型通常很难得到较高的跟踪精度。为此,以自适应卡尔曼滤波为基础,将直角坐标系和球坐标系相结合,提出了一种混合坐标系下的自适应卡尔曼滤波算法。算法避免了两个坐标系变换引起的噪声统计规律变化问题,并针对目标发生大机动运动的情况,自适应的调整动态模型中机动目标运动参数。蒙特卡洛仿真结果表明,改进算法的收敛速度和对状态的估计精度均得到优化,并对机动目标具有较好的跟踪性能。  相似文献   

6.
伪线性卡尔曼滤波在目标被动跟踪中的应用   总被引:1,自引:0,他引:1  
在对目标进行纯方位跟踪时,伪线性卡尔曼滤波算法是一种有效的跟踪滤波方法,该方法可以很好地对目标运动状态进行估计。通过仿真证明了该方法降低了对模型精度的要求,具有较好的稳定性。  相似文献   

7.
提出一种基于加性无迹卡尔曼滤波的雷达目标跟踪方法。雷达跟踪系统为离散非线性系统,传统的解决方法是使用扩展卡尔曼滤波。无迹卡尔曼滤波用少量采样点表示随机变量的分布,通过非线性系统传播,能以三阶精度获得非线性变换的均值和方差的估计。用无迹卡尔曼滤波进行雷达目标跟踪。通过Monte Carlo仿真,验证了该滤波算法比传统的扩展卡尔曼滤波具有更高的滤波精度。  相似文献   

8.
针对机动目标跟踪过程中建立的目标模型和目标的实际运动模式出现失配的问题,提出了从一组离散模型集中选出最优模型,并自适应调整模型参数,使模型逼近目标实际运动模式的交互式多模型算法.蒙特卡罗仿真表明,该算法与传统的常速模型与自适应协同转弯模璎交互算法(IMM-CV/ACT)相比,在目标发生强机动时,能及时有效的把跟踪误差峰值控制在测最标准差之下,适合于强机动目标跟踪.  相似文献   

9.
无线传感网络中运动目标状态通常满足某种非线性状态约束,为了提高对传感网络中运动目标的跟踪精度,降低非高斯噪声对状态估计的影响,避免高斯项数在迭代过程中的冗余累积,提出一种带非线性约束的权值自适应高斯和卡尔曼滤波算法.算法在每个时刻计算目标当前状态的高斯子项集合,并对每个高斯子项分别以无迹卡尔曼滤波进行状态估计.设计了一种高斯子项权值自适应策略动态调节子项权值,以实现无约束状态下的全局估计.将目标的非线性状态约束引入滤波器结构中时,考虑将其看作一类无约束状态估计的约束投影问题,通过状态约束信息先验来修正运动目标的状态估计.仿真结果表明,该算法与目前的非线性约束卡尔曼滤波相比具有更高的跟踪精度.  相似文献   

10.
在光电跟踪系统中,图像采集装置相对控制系统传感器滞后,会使脱靶量出现误差,将导致控制系统的跟踪精度降低.为了提高跟踪精度,提出了一种用于补偿跟踪脱靶量数据的自适应卡尔曼滤波方法.首先,通过CSM模型计算当前时间的状态预测矩阵和预测误差方差矩阵;再根据强跟踪滤波器,利用残差序列计算调节因子;然后,利用调节因子校正预测误差...  相似文献   

11.
针对足球机器人比赛时的模型变化及其环境噪声先验估计不准确的问题,提出一种基于自适应卡尔曼滤波的足球机器人视觉跟踪算法;该算法将一种基于减背景的运动目标识别的方法与自适应卡尔曼滤波跟踪模型进行结合,对背景进行实时更新,并通过形态学滤波去除残留的小区域,从而准确的识别运动目标,通过自适应的在线调整运动模型参数来保证模型预测值的准确性,进而提高了目标跟踪时的匹配效率,实现了目标的精准、迅速跟踪;通过实验证明,该算法是很有效的,具有推广价值.  相似文献   

12.
为实现雷达的精确制导功能,需要精确的跟踪和测量动目标的各项运动参数,为了提高跟踪测量精度,根据目标运动特性采用与系统相匹配的滤波算法。本文探讨了卡尔曼滤波的原理和特点,设计了有效的滤波参数和滤波方程,并通过仿真验证了卡尔曼滤波对跟踪测量精度改善的有效性。  相似文献   

13.
针对应用CamShift算法进行目标跟踪过程中,当目标被严重遮挡、目标被与目标颜色相近的背景干扰时易丢失跟踪目标的问题,提出了一种基于CamShift和Kalman滤波组合的改进跟踪算法;为克服目标因严重遮挡而丢失的缺陷,利用自适应算法改进了传统的CamShift算法,扩大了搜索窗口,使运动目标位于搜索窗口内;为解决目标因颜色相近背景干扰而丢失的问题,改善跟踪准确率,利用卡尔曼滤波预测目标运动空间位置,作为下一帧搜索窗口的质心坐标;基于上述改进,利用C++语言,研发了改进的CamShift目标跟踪软件模块,给出了该模块的算法流程;实验结果表明,改进后的目标跟踪算法能有效地克服传统CamShift算法的缺陷,大大提高运动目标跟踪的准确性;所提的算法可以应用于运动小车跟踪,人脸识别等领域。  相似文献   

14.
自适应Kalman滤波器在水下被动目标跟踪中的应用   总被引:3,自引:1,他引:3  
在水下被动目标跟踪系统中,直角坐标系下的扩展卡尔曼滤波器容易发散而导致滤波精度很差,提出了一种修正极坐标系下的自适应卡尔曼滤波算法,对虚拟噪声进行估计,动态补偿模型线性化误差,消减系统的观测误差.对其滤波理论及算法进行了研究和仿真。仿真结果表明,该算法提高了滤波的稳定性、快速性和精确性,优于一般的扩展卡尔曼滤波算法。  相似文献   

15.
对于带未知噪声统计的单输出系统,本文提出了一种新的自适应Kalman滤波器.应用现代时间序列分析方法,基于ARMA新息模型的滑动平均(MA)参数的在线辨识,提出了稳态最优Kalman滤波器增益估计的一种新算法,比Mehra的算法简单.同时还提出了辨识滑动平均(MA)模型参数的一种新的自适应Kalman滤波算法.此外,给出了在雷达跟踪系统中的应用,且仿真结果说明了本文算法的有效性.  相似文献   

16.
卡尔曼预测器在目标相关跟踪中的应用   总被引:2,自引:0,他引:2  
徐剑  段哲民 《计算机仿真》2005,22(11):120-122
在目标跟踪系统中,特别是在复杂背景情况下对地面目标的跟踪中,相关跟踪算法是常用的一种算法.但问题是传统相关算法采用全局搜索的方法,使得计算量相当大,不易实时实现,而且当发生目标局部遮挡时,目标容易丢失.为解决这个问题,该文提出一种基于卡尔曼预测器的目标相关跟踪的方法,充分利用卡尔曼预测器的预测功能来预测下一帧目标可能出现的区域,然后在较小的预测区域中进行相关匹配运算,找到最佳相关匹配点,从而使目标相关跟踪更具主动性.实验中用传统算法和本文提出的算法对高速行驶的坦克进行跟踪时,传统算法容易跑飞,而该文算法不受遮挡干扰,始终稳定跟踪且耗时大幅减少.因此该文算法能够较好地克服传统相关算法中存在的计算量大和易受遮挡干扰的缺点.  相似文献   

17.
陈金丽  张帆  张显 《计算机仿真》2009,26(9):317-320
液位是工业测量的重要参数之一,如何准确有效的对液位进行测量一直是研究的一个重点。为解决上述问题提出将视频技术应用于液位测量的新方法。当出现干扰时,以往的直接测量算法很难准确测量,而运用此方法,首先根据液位运动特性,建立其运动的数学模型,在采用更新函数的背景差法基础上,提出了一种卡尔曼滤波的预估校正算法,避免了测量中对单帧图像信息的依赖,提高了检测系统抗扰性。实验仿真表明,算法有效地保证了液位跟踪的准确性、稳定性和连续性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号