首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This article reports the luminescence properties of amphipathic YVO4:Er3+/Yb3+ nanoparticles (average grain size ca. 20 nm) obtained by an oleate-aided hydrothermal process. Depending on the upconversion (UPC) and downconversion (DWC) processes, they show luminescence in the visible and near-infrared (NIR) regions, respectively, by 980-nm excitation. The sample doped with Er3+:2.5 mol% and Yb3+:10 mol% showed the highest luminescence intensity in both the visible and NIR regions as a result of efficient energy transfer from Yb3+ to Er3+ ions. The hydrothermal treatment greatly enhanced both the DWC and UPC luminescence efficiencies. This is due to the reduction in the concentration of surface defects and ligands, accompanied by grain growth. NIR Fluorescence microscopy revealed for the first time that DWC luminescence is sufficiently intense for application of these nanocrystals as a NIR bioprobe.  相似文献   

2.
The Stokes and anti-Stokes luminescence of undoped and rare-earth-doped (Er3+ and Yb3+) BaSiO3 has been studied in the temperature range 78–450 K under excitation at 10–1000 mV. The results indicate that the emission mechanism in BaSiO3 crystals is hole recombination and that the anti-Stokes luminescence is due to consecutive sensitization; that is, the Yb3+ ions in the BaSiO3 compound act as luminescence sensitizers, and the Er3+ ions, as activators.  相似文献   

3.
The upconversion luminescence (UCL) of nanocrystalline gadolinium oxide (Gd2O3) doped with Er3+ and Yb3+ ions has been studied in the temperature range of 90–400 K. The nanocrystals were synthesized by chemical vapor deposition and possessed a cubic crystalline structure with an average particle size within 48–57 nm. It is established that the USL intensity in the red (4F9/24I15/2 transition in Er3+ ion) and green (4S3/24I15/2 transition) spectral regions depends on the sample temperature and concentration of dopant ions, as well as on the additional structural defects (anion vacancies) created in the crystal lattice by the introduction of Zn2+ ions or irradiation with high-energy (10 MeV) electrons. The luminescence efficiency and spectrum of the upconversion phosphor are determined by energy transfer processes.  相似文献   

4.
Data are presented on the 300-K photoluminescence in GaS crystals doped with Er3+ or codoped with Er3+ and Yb3+. IR excitation (λex = 976 nm) gives rise to anti-Stokes luminescence in GaS:Er3+ (0.1 at %) and GaS:Er3+,Yb3+ (0.1 + 0.1 at %) and leads to an increased intensity of the emission due to the 4 I 11/24 I 15/2 transitions. The anti-Stokes luminescence is shown to result from consecutive absorption of two photons by one Er3+ ion, and the increased intensity of Er3+ luminescence in GaS: Er3+,Yb3+ is due to energy transfer from Yb3+ to Er3+.  相似文献   

5.
The blue-emitting YPO4 phosphors doped with Yb3+ were prepared by a simple hydrothermal method. All the products were characterized by XRD and TEM, which revealed that they were zircon structure with leaf-like morphology. According to the analysis of photoluminescence spectra, upon ultraviolet (275 nm) excitation, the Yb3+ doped YPO4 phosphor showed an intense blue emission composed of two main bands at 420 and 620 nm assigned to charge transfer state (CTS) → 2F5/2 and CTS → 2F7/2, respectively. Moreover, the optimum doping concentration of Yb3+ in YPO4 phosphor was 1%, which exhibited the maximum emission intensity. The possible physical mechanism of concentration quenching was discussed, and the critical transfer distance determined to be 23.889 Å. In particular, the color purity of the as-synthesized Yb3+ doped YPO4 phosphor was as high as 83%, which made it an excellent candidate for blue-emitting materials.  相似文献   

6.
The Mn2+, Yb3+, Er3+: ZnWO4 green phosphors are synthesized successfully through the high temperature solid state reaction method. The micro-structure and morphology have been investigated by means of XRD and EDS. The doped concentrations of Mn2+, Yb3+, Er3+ are measured by ICP. The absorption spectra and emission spectra with different doped concentrations of Mn2+ are presented to reveal the influence of Mn2+ on the green up-conversion performance. Excited with 970 nm LED, the up-conversion emission peak at 547 nm is obtained and the CIE spectra as well as the green light photo are also presented. The results indicate that the Mn2+ ions play the role of the luminescence adjustment in the up-conversion process, which can improve the up-conversion green emission intensity effectively. The luminescence adjustment mechanism of Mn2+ ions in Mn2+, Yb3+, Er3+: ZnWO4 green phosphors has been discussed. The crystal parameters of Dq, B and C are calculated to evaluate the energy level split effect.  相似文献   

7.
A new phosphor CaSnO3: Yb3+ was synthesized by a traditional solid-state reaction and the luminescent properties were investigated. The phosphors are well crystallized at 1200?°C. The excitation and the emission spectra show the characteristic broad of the Sn2+ ion and the X-ray photoelectron spectroscopy demonstrate the existence of Sn2+ ions caused by the doping of Yb3+ ions. The CaSnO3: Yb3+ phosphor showed a typical afterglow behavior when the UV source was switched off. Thermal simulated luminescence study indicated that the persistent afterglow of CaSnO3: Yb3+ phosphor was generated by the suitable electron or hole traps which were resulted from doping the calcium stannate host with rare-earth ions (Yb3+).  相似文献   

8.
Er3+(/Yb3+)-doped Li3NbO4 powder were prepared by thermally sintering mixtures of Er2O3 (0.5, 1.0 mol%), Yb2O3 (0, 0.5, 1.0 mol%), Li2CO3 (48–49 mol%) and Nb2O5 (50 mol%) at 1125, 1150 and 1450 °C over the durations of 8–22 h. The crystalline phases contained in these samples were determined by using X-ray diffraction and discussed in comparison with a vapor-transport-equilibration-treated (VTE-treated) Er(2.0 mol%):LiNbO3 single crystal and ErNbO4 powder previously reported. The results show that the X-ray patterns of the rare-earth-doped samples reveal little difference each other, but large differences with those of the VTE crystal and ErNbO4 powder. The doped rare-earth ions Er3+ (and Yb3+) present in the powder as the ErNbO4 (and YbNbO4) phase(s). The possibility that the highly Er-doped LiNbO3 crystal contains Li3NbO4 precipitates is small. Optical absorption and emission studies show that the only Er-doped Li3NbO4 powder shows similar absorption and emission characteristics with the pure ErNbO4. The codopant Yb3+ ion enhances the 980-nm-upconversion emissions of Er3+ ions, results in remarkable spectral alterations at 0.98 μm region, and causes the alterations of relative absorbance and relative emission intensity of individual peaks or bands at 1.5 μm region. On the other hand, the Yb-codoping hardly affects the Er3+ energy structure and the lifetime of Er3+ ion at 1.5 μm. The measured lifetimes at 1.5 μm of Er3+ ions in the singly Er3+- and doubly Er3+/Yb3+-doped mixtures have a nearly same value of ∼ 1.5 ms. For the pure ErNbO4 powder, the lifetime is prolonged to ∼2 ms perhaps due to radiation trapping effect.  相似文献   

9.
Infrared-to-ultraviolet upconversion luminescence agent Y2O3:Yb3+,Tm3+ was prepared by a combustion method using citrate as a fuel/reductant. The prepared sample was characterized by X-ray diffraction, SEM, and fluorescence spectrophotometer. Two unusual 1I6 → 3H6 (~297 nm) and 1D2 → 3H6 (~363 nm) emissions from Tm3+ ions were observed at room temperature under 980-nm laser excitation. The change of upconversion emission intensity depending on the Yb3+ concentrations was discussed. The results showed that modest Yb3+ doping could make the upconversion emission of Tm3+ intense, and high Yb3+ concentrations might lead to fluorescence quenching. Moreover, the influence of ultraviolet upconversion luminescence on the photodegradation of methyl orange aqueous solution under solar light irradiation in the presence of TiO2 catalyst doped with Y2O3:Yb3+,Tm3+ was also investigated. It was concluded from the experiment of this study that TiO2/Y2O3:Yb3+,Tm3+ composite had higher photocatalytic activity than pure TiO2 under solar light. This study would make TiO2 utilize sunlight more efficiently and accelerate the practical application of photocatalytic technology in water treatment region.  相似文献   

10.
The polycrystalline Eu2+ and RE3+ co-doped strontium aluminates SrAl2O4:Eu2+, RE3+ were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence of the SrAl2O4:Eu2+, RE3+ phosphors with different composition and doping ions were studied and compared. The results showed that the doped Eu2+ ion in SrAl2O4:Eu2+, Dy3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy3+ ion can hardly yield any luminescence under UV-excitation, but can form a electron trap with appropriate depth and greatly enhance the persistent luminescence and thermo-luminescence of SrAl2O4:Eu2+. Different co-doping RE3+ ions showed different effects on persistent luminescence. Only the RE3+ ion (e.g. Dy3+, Nd3+), which has a suitable optical electro-negativity, can form the appropriate electron trap and greatly improve the persistent luminescence of SrAl2O4:Eu2+. Based on above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated.  相似文献   

11.
We report the synthesis and spectroscopic characterization of polycrystalline Yb3+-doped (1, 2, and 5 at %) Ln3BWO9 (Ln = Gd and Y) borotungstates as candidate gain media for diode-pumped near-IR and visible solid-state lasers. Unpolarized luminescence and absorption spectra for the Yb3+ 2 F 7/22 F 5/2 transition are measured at T = 77 and 300 K, the lifetime of the 2 F 5/2 excited state is determined, and the emission cross section of the stimulated Yb3+ 2 F 5/22 F 7/2 transition in these compounds is evaluated. Offering a combination of nonlinear optical and lasing properties, the Ln3BWO9 (Ln = Gd, Y) hexagonal borotung-states can be used as bifunctional media for diode-pumped lasers with nonlinear laser frequency self-conversion.  相似文献   

12.
Ultrafine Er3+/Yb3+-codoped SrTiO3 (SEYT) powders in cubic form have been prepared by a poly-meric precursor method. The single phase perovskite for the obtained material was observed at low temperature. An efficient infrared-to-visible conversion in SEYT perovskite will be reported. Visible emissions at 550 and 663 nm corresponding to the 2S3/24I15/2 and 4F9/24I15/2 transitions, respectively, were observed under continuous wave excitation at 980 nm. An enhancement of the visible upconversion luminescence in Er3+/Yb3+ codoped samples was confirmed due to efficient energy transfer from Yb3+ to Er3+ ions. The quadratic pump power dependence of these emissions indicated the contribution of two photons to the upconversion process. The text was submitted by the authors in English.  相似文献   

13.
Intense Tm3+ blue upconversion emission has been observed in Tm3+–Yb3+ codoped oxyfluoride tellurite glass under excitation with a diode laser at 976 nm. Three emission bands centered at 475, 650 and 796 nm corresponding to the transitions 1G43H6, 1G43H4 and 3F43H6, respectively, simultaneously occur. The dependence of upconversion intensities on Tm3+ ions concentration and excitation power are investigated. For fixed Yb2O3 concentrations of 5.0 mol%, the maximum upconversion intensity was obtained with Tm2O3 concentration of about 0.1 mol%. The blue upconversion luminescence lifetimes of the Tm3+ transitions 1G43H6 are measured. The results are evaluated by the possible upconversion mechanisms.  相似文献   

14.
Ce3+/Mn2+ singly doped and codoped Mg2Al4Si5O18 phosphors were synthesized by a solid state reaction. The phase, luminescent properties and thermal stability of the synthesized phosphors were investigated. Ce3+ and Mn2+ singly doped Mg2Al4Si5O18 phosphors show emission bands locating in blue and yellow–red regions, respectively. In Ce3+ and Mn2+ codoped Mg2Al4Si5O18, tunable luminescence was obtained because of the energy transfer from Ce3+ to Mn2+. In Mg2Al4Si5O18:Ce3+/Mn2+ phosphors with a fixed Ce3+ concentration, energy transfer efficiency increases with the increasing Mn2+ concentration, which is confirmed by the continually decreasing intensity and shortening decay time of Ce3+ emission. Moreover, the luminescent properties and thermal stability provide a great significance on the applications in the field of light emitting diodes.  相似文献   

15.
A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x?≤?2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.  相似文献   

16.
We have studied the pulsed cathodoluminescence spectra and kinetics of CaF2:Yb2+,Yb3+ (3 mol % YbF3) single crystals and pressed samples under excitation with nanosecond electron pulses and determined the characteristic times and intensities of nanosecond and microsecond emission decay components at temperatures from 15 to 300 K. The results demonstrate that deformation pressing in vacuum at 1150°C followed by annealing in a CF4 atmosphere at 1180°C has an insignificant effect on the emissive properties of CaF2:Yb2+,Yb3+.  相似文献   

17.
The effect of the synthesis conditions on the properties of inorganic laser-active liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ is considered. The kinetic dependences of the U(IV) content and decay time of the Nd3+ luminescence in POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions for various synthesis procedures at 380 K have been obtained. In POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions, nonradiative energy transfer Nd3+ → U4+ is observed, and quenching of the Nd3+ luminescence is described by the Stern-Volmer law: k q = (6.4 ± 0.6) × 105 l mol?1 s?1. Laser liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ with neodymium concentration of up to 0.7 M, uranyl concentration of up to 0.1 M, and decay time of the Nd3+ luminescence of up to 220 μs have been prepared for the first time.  相似文献   

18.
The influence of activation of the Y2O3 matrix of the Y2O3:Eu3+ phosphor by Bi3+ ions on the luminescence of Eu3+ and Bi3+ ions in it and on conditions of the excitation energy transfer to luminescence centers is studied. It is shown that the presence of Bi3+ ions leads to the appearance of recombination luminescence with participation of bismuth ions at low concentrations (up to 6–8 at %) of the dominant activator europium and to an increase in the threshold of intrinsic concentration quenching of its luminescence.  相似文献   

19.
Phase pure Ce3+ and Tb3+ singly doped and Ce3+/Tb3+ co-doped Ba3GdNa(PO4)3F samples have been synthesized via the high temperature solid-state reaction. The crystal structures, photoluminescence properties, fluorescence lifetimes, thermal properties and energy transfer of Ba3GdNa(PO4)3F:Ce3+,Tb3+ were systematically investigated. Rietveld structure refinement indicates that Ba3GdNa(PO4)3F crystallizes in a hexagonal crystal system with the space group P-6. For the co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ samples, the emission color can be tuned from blue to green by varying the doping concentration of the Tb3+ ions. The intense green emission was realized in the Ba3GdNa(PO4)3F:Ce3+,Tb3+ phosphors on the basis of the highly efficient energy transfer from Ce3+ to Tb3+. Also the energy transfer mechanism has been confirmed to be quadrupole–quadrupole interaction, which can be validated via the agreement of critical distances obtained from the concentration quenching (13.84 Å). These results show that the developed phosphors may possess potential applications in near-ultraviolet pumped white light-emitting diodes.  相似文献   

20.
A series of single-phase Sr3YNa(PO4)3F:Dy3+ phosphors were successfully synthesized via a conventional solid state reaction process. The powder X-ray diffraction patterns were utilized to confirm the phase composite and crystal structure. The phosphor could be excited by the ultraviolet visible light in the region from 300 to 420 nm, and it shown two dominant emission bands peaking at 484 nm (blue light) and 580 nm (yellow light) which originated from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The optimum dopant concentration of Dy3+ ions was confirmed to be 7 mol% in Sr3YNa(PO4)3F:Dy3+ system and the concentration quenching mechanism is dipole–dipole interaction. The lifetime values of Dy3+ ions at different concentrations (x?=?0.03, 0.05, 0.07, 0.09 and 0.11) were determined to be about 0.855, 0.759, 0.686, 0.606 and 0.546 ms, respectively. The thermal stability of luminescence of Sr3YNa(PO4)3F:0.07Dy3+ phosphor was also investigated and the activated energy was deduced to be 0.228 eV, which shows good thermal stability. The chromaticity coordinates fall in the white-light region calculated by the emission spectrum. These results show that Sr3YNa(PO4)3F:Dy3+ phosphor can be a promising white emitting phosphor for white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号