首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有机硅压敏胶粘剂的研究概况   总被引:2,自引:0,他引:2  
介绍了有机硅压敏胶的性能特点及应用;综述了该胶种在国内外的研究开发的历史及现状,展望了有机硅压敏胶的发展前景。  相似文献   

2.
The synthesis and characterization of solventless acrylic UV crosslinkable pressure sensitive adhesives are presented. Different prepolymers were synthesized using bulk polymerization procedure. The reaction mixture consisted of acrylic monomers (2-ethylhexyl acrylate, acrylic acid and t-butyl acrylate), azobisisobutyronitrile initiator, chain transfer agent n-dodecylmercaptan and unsaturated UV photoinitiator 4-acryloyloxybezophenone, which was copolymerized into polymer backbone. Different formulations were tested and the prepolymer was characterized by viscosity measurements and final monomer conversions. The prepolymers were coated onto PET foil and crosslinked by application of UV light source. Peel adhesion at 180° on glass plate was measured. Gel phase was determined using the Soxhlet extraction and copolymer glass transition temperatures (Tg) were analyzed by differential scanning calorimetry (DSC). Results showed that the final monomer conversions in highly exothermic bulk polymerization reached a level between 75% and 90%. Prepolymer viscosity was highly influenced by change in polymer molecular weight and by addition of acrylic acid as a comonomer. On the other hand, the viscosity remained at the low level when t-butyl acrylate was used. The amount of gel phase for all adhesives was above 60 wt.%. Peel strength measurements showed decrease in peel strength with decreasing polymer molecular weight and increase of peel, when acrylic acid was used as a comonomer. All adhesive coatings with t-butyl acrylate comonomer showed cohesive failure.  相似文献   

3.
The effect of humidity during storage on the crosslinking reactions of isocyanate groups was investigated with attenuated total reflectance Fourier transform infrared spectroscopy with pressure‐sensitive adhesives composed of poly[ethyl acrylate‐co‐(2‐ethylhexyl acrylate)‐co‐(2‐hydroxyethyl methacrylate)] as a base resin and polyisocyanate as a crosslinker. A peak‐resolving analysis of the amide II region revealed four bands. According to an analysis of the Fourier transform infrared spectra of the model compounds, these four bands were assigned to free urethane linkages, hydrogen‐bonded urethane linkages, free urea linkages, and hydrogen‐bonded urea linkages. As expected, storage under humid conditions led to the formation of free and hydrogen‐bonded urea linkages corresponding to the promotion of isocyanate consumption. Peak resolution of the amide II region was found to be a reasonable way of monitoring urethane and urea linkages during crosslinking reactions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3039–3045, 2003  相似文献   

4.
On the basis of synthesis of a series of solvent based acrylic pressure sensitive adhesives (PSAs) with different crosslinking density, the thermal and rheological properties were characterized. Tg values were increased after crosslinked with MDI, and the thermal stability was also improved. Rheological studies were performed via frequency sweep, amplitude sweep, temperature sweep patterns, respectively. The creep recovery properties were also researched. In this way, it was proved that the linear viscoelastic (LVE) range was elongated as the feeding MDI increased, the elastic modulus (G′) of the acrylic PSAs was obviously increased after crosslinked with MDI whereas hardly making any change to the viscous modulus (G″). In the frequency sweep pattern, the PSAs samples behave as pseudoplastic non-Newtonian fluid; and zero shear viscosity increased as the feeding MDI mass ratio was increased, after discussing the cross-over frequency (??) and the relaxation time tR, it can be concluded that the addition of MDI would make for the improvement of the elasticity of the PSAs; in the temperature sweep pattern, it could be seen that the cross-over temperatures (where G″=G′) were 34 and 70 °C for the samples crosslinked with 0 wt% and 0.1 wt% MDI, respectively. When the mass ratio of MDI fed was higher than 0.1 wt%, even though the temperature increased to 120 °C, the samples remained elastic (G′>G″). In the creep recovery test, it was noteworthy that as the feeding ratio of MDI was increased, the creep recovery properties of the acrylic PSAs were substantially improved. And for the same sample, as the applied constant stress increased from 200 to 1000 Pa, the recoverable proportion of the materials was principally not changed in that all the experiments were carried out within the linear viscoelastic range of the samples. And the sample crosslinked with 0.5 wt% MDI shows the highest 180° peel stress.  相似文献   

5.
For pressure‐sensitive adhesives (PSAs) composed of poly(co‐ethyl acrylate‐2‐ethylhexyl acrylate‐2‐hydroxyethyl methacrylate) as a base resin and polyisocyanate as a crosslinker, the relationship between the crosslinking reaction and peel strength was investigated. A 90° peel test of cured PSA films under various storage conditions was carried out. At the same time, the isocyanate (NCO) consumption in these PSA films was monitored by attenuated total reflectance/Fourier transform infrared spectroscopy. The peel strength of the PSA compounded with the crosslinker decreased as the NCO groups were consumed. The elevation of the aging temperature promoted the crosslinking reaction and increased the decrement in the peel strength. The peel strength of noncrosslinked and crosslinked PSA films increased with the contact time. A high storage temperature made the increment in the peel strength increase. The addition of the crosslinker to the PSA films reduced the increment in the peel strength. Furthermore, PSA films with residual NCO groups possessed stronger peel strengths than fully cured films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1493–1499, 2003  相似文献   

6.
High solids content PU/(meth)acrylics latexes for application as pressure sensitive adhesives (PSAs) were successfully synthesized by miniemulsion photopolymerization in a continuous tubular reactor at room temperature. It was shown that the process is very flexible and the polymer microstructure can be widely changed by simply controlling the radical initiation using different photoinitiator types and concentrations and varying the incident light irradiance. PSAs presenting a whole spectrum adhesive properties were obtained, some of them having the desired and unusual combination of high work of adhesion and maximum shear adhesion failure temperature (SAFT > 210 °C). The adhesive properties were analyzed in terms of the molecular weight distribution of the whole sample measured by asymmetric flow field flow fractionation.  相似文献   

7.
The use of acrylic pressure sensitive adhesives (PSAs) in flexible displays involves their attachment to each layered device. Due to the high industrial demand of flexible displays, acrylic PSAs must necessarily exhibit high flexibility. In this study, the effect of the crosslinking density of acrylic PSAs on their adhesion and flexibility properties has been investigated by incorporating a diisocyanate crosslinking agent into the PSA structure. As the content of the crosslinking agent increased, the measured peel strength and tack of the synthesized PSAs decreased, while the maximum value of the lap shear stress increased. In addition, the maximum stress and shear strain determined for the crosslinked PSA specimens decreased with an increase in the crosslinking agent concentration (although, the stress measured at low strain values was initially increasing until the crosslinking agent content reached 1 phr). The results of stress relaxation testing showed a stress increase at specified strain levels with an increase in the crosslinking agent content up to 0.5 phr, while the results of creep testing revealed that the measured strain was inversely proportional to the degree of elastic recovery. The obtained data indicate that crosslinking generally improves the PSA properties related to their use in flexible display applications; however, very high crosslinking densities produce mostly a negative effect on the PSA flexibility and adhesion characteristics.  相似文献   

8.
丙烯酸酯类压敏胶的合成与性能研究   总被引:4,自引:1,他引:4  
以丙烯酸丁酯(BA)、丙烯酸异辛酯(2-EHA)、醋酸乙烯酯(VAc)、丙烯酸(AA)、丙烯酸羟丙酯(HPA)为原料,乙酸乙酯为溶剂,过氧化苯甲酰为引发剂制备了五元共聚丙烯酸酯类压敏胶。考查了软单体组成、软硬单体配比、丙烯酸用量、丙烯酸羟丙酯加量、增粘树脂对压敏胶性能的影响。实验结果表明,当软单体m2-EHA:mBA=2:1、软硬单体的质量比为6:1、丙烯酸用量为5%、丙烯酸羟丙酯加量为8%、松香用量为5g时,压敏胶性能较佳。  相似文献   

9.
The adhesive performance of high solids content water-borne acrylic pressure sensitive adhesives synthesized using polymerizable surfactants (Latemul®PD-104 and Sipomer®Pam-200) or a polymerizable stabilizer (Sipomer®Cops-1) has been studied. The use of a high pH during the polymerization process has a deleterious effect on the final adhesive properties because gel polymer is not formed. Interestingly, at low pH it is found that the surfactant concentration used during the polymerization process has also an effect on the polymer microstructure; the higher the surfactant concentration, the higher the final gel content of the latex. When polymerizable surfactants or a stabilizer are used the peel strength of the final films is considerably improved due to the surfactant incorporation into the polymer backbone and hence reduced surfactant migration to the air-film interface. Work of adhesion and shear adhesion failure temperature (SAFT) are not noticeably affected by surfactant migration but their performance is affected by the surfactant employed.  相似文献   

10.
Acrylic pressure sensitive adhesive (PSA) latexes were synthesized via a monomer-starved seeded semi-continuous emulsion polymerization process with butyl acrylate (BA), methyl methacrylate (MMA), N,N-dimethylacrylamide (DMA), acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA) as monomers. Impacts of DMA on the resultant latex and PSA properties were comprehensively investigated. Results indicated that latex particle size was independent of the amount of DMA in the pre-emulsion feed with excessive and constant surfactant concentration. Latex viscosity increased with DMA concentration. It was also found that water resistance of acrylic latex PSA became worse by the presence of DMA, confirmed by water contact angle measurements. Besides, DSC results showed that as the amount of DMA increased, glass transition temperatures (Tg) of the polymers were elevated significantly. TGA results showed that thermal stability of PSA was improved with DMA as a co-monomer. Furthermore, as DMA amount increased, gel content slightly increased, while sol molecular weight (Mw, Mn) of the polymer decreased. Finally, with respect to the adhesive properties of the PSA, it was observed that loop tack initially increased and then decreased with the addition of DMA from 0 to 4 wt%, and the maximum value appeared at 1 wt%. Peel strength reduced, while shear strength improved with increased DMA concentration.  相似文献   

11.
有机硅压敏胶的研究进展   总被引:4,自引:2,他引:2  
主要从溶剂和固化形式两个方面总结了有机硅压敏胶近二十年来的研究进展情况,从中可以看出有机硅压敏胶正朝着环保(低VOC)、节能(低温固化)和功能化的方向发展。  相似文献   

12.
热塑性弹性体型热熔压敏胶的研究进展   总被引:4,自引:0,他引:4  
介绍了热熔压敏胶用热塑性弹性体以及增粘树脂的特点、作用以及研究进展,并对热熔压敏胶的发展方向以及应用前景进行了展望。  相似文献   

13.
In this study, poly (n-butyl acrylate-co-2-ethyl hexyl acrylate) (P(nBA-co-2EHA)) pressure sensitive adhesives (PSAs) were successfully synthesized in the presence of cellulose nanocrystals (CNCs) via in-situ miniemulsion polymerization. First, the CNCs were prepared via acid hydrolysis of cellulose microcrystals (CMCs) at various temperatures, 42–54 °C, and characterized using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) apparatus. The results showed that hydrolysis of MCCs at 45 °C resulted in CNCs with a well-defined aspect ratio, average length of 206 nm and thickness of 3.9 nm, and the highest crystallinity. Adding further CNC to the copolymer adhesive enhanced the mean particle size of the composite latex and decreased the glass-rubber transition temperature (Tg) of the copolymer matrix. Molecular weights and viscoelastic properties of the resultant PSAs were determined using gel permeation chromatography (GPC) and dynamic mechanical thermal analysis (DMTA), respectively. Adhesion performance of the neat and reinforced PSAs containing 1–5 wt% CNCs was evaluated at room temperature. The results showed that the incorporation of CNCs up to 4 wt% in the copolymer adhesive increased the shear resistance by 518%, peel strength by 176% and probe tack by 13%, while further addition, 5 wt%, lowered the adhesion performance due to a lack of surface wettability.  相似文献   

14.
The widespread industrial use of pressure sensitive adhesives (PSAs) is based on the advantage that PSAs can maintain sufficient bond strength, as well as, if needed, they can also be cleanly removed. These two essential requirements must be balanced to be a good PSA, and are not obtained without an accurate control of rheological properties. In this study, a new type of creep test is devised to measure the rheological behavior of thin film PSAs with high precision. Based on this technique, we studied four different methods to control the viscoelastic properties of PSAs. These are (1) control of the amount of crosslinking agent, (2) use of plasticizers, (3) adjustment of PSA film thickness, and, (4) construction of PSA double-layers. It was found that the levels of creep could be controlled over a wide range by adjusting the amount of crosslinking agent. Samples containing plasticizers behaved similarly to the PSAs with less amount of crosslinker (thus more mobile). The increase of film thickness also led to an increase of creep in a similar fashion as noted above. The creep behavior of the double-layer PSAs, composed of two PSA layers with different levels of crosslinking and thickness, followed a reasonable prediction: the total deformation, δt, was always less than the amount predicted by the two-phase model in which the limits are determined by two single layers of soft and hard PSA; however, δt was greater than the level of creep based on the one-phase model in which a complete mixing of crosslinker within the two PSA layers is assumed. In the last part, some characteristic creep behaviors of selected PSAs are discussed based on a linear viscoelastic model.  相似文献   

15.
Different pressure‐sensitive adhesives (PSAs) based on acrylic monomers were synthesized under different reaction conditions. The synthesized PSAs have good adhesive properties and without leaving any residue can be easily peeled off from the surface of a substrate. The relationship between PSAs rheological behavior and its adhesion properties (e.g., peel, tack, and shear resistance) has been studied at constant adhesive thickness. The samples were examined for their surface energy and viscoelastic characteristics. It was observed that increase in reaction temperature and reaction time results in decreased storage modulus due to lowered molecular weight, which finally leads to lower elasticity of the PSA. While the storage (G′) and loss (G″) modulus of samples increase with increased initiator concentration, the elasticity of PSA is increased as well. High G″ at high frequency (100 Hz) represents high peel strength because of higher dissipation of viscoelastic energy during debonding. The tack values increase by lowering storage modulus at 1 Hz due to higher Me. Shear values are increased by higher storage modulus at low frequency (0.1 Hz) due to hydrogen bonding of the different components. Some parallel investigations on the surface energy of the samples showed that they have different properties because of the nature of different monomeric units with their corresponding orientations. Our results reveal that the peel strength is not affected by surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
New more simple and easier strategy for synthesizing thermoplastic polyurethane pressure sensitive adhesives (TPU PSAs) has been proposed. Thus, the properties of the TPU PSAs were adjusted by fixing the NCO/OH ratio to 1.1 and varying the content of the hard segments by mixing high molecular weight and low molecular weight polyether polyols during TPU synthesis. The thermoplastic polyurethanes have been synthesized with methylene diisocyanate (MDI), 1,4 butanediol chain extender and different mixtures of two polypropylene glycols (PPGs) polyols with different molecular weights (450 and 2000 Da). TPUs with different hard segments content (12.5–38.7%) were synthesized and their pressure sensitive adhesive properties depended on their hard segments contents and degree of phase separation. In general, the TPU PSAs with higher hard segments content exhibited low probe tack and low loop tack regardless of the nature of the metallic and polymeric substrate. In contrast, the 180° peel strength depended noticeably on the nature of the polymeric substrate and on the hard segments content of the TPU. TPU PSAs with hard segments content lower than 20.9% were general purpose or removable PSAs and the ones with higher hard segments content were high shear PSAs.  相似文献   

17.
Acrylate pressure sensitive adhesive (PSA) latexes were synthesized via a starved monomer seeded semi-batch emulsion polymerization process with butyl acrylate (BA), methyl methacrylate (MMA), acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA). These PSA polymers were then cross-linked with trifunctional propyleneimine external cross-linker (SAC-100) to study the cross-linking reaction between carboxylic group of the polymer chain and cross-linking agent. It was found that cross-linking provided a significant influence on the film formation process based on the result of SEM analysis. In addition, with the increase of SAC-100 content, the gel content of the polymer increased significantly, while molecular weight between cross-link points (Mc) and the sol molecular weight (Mw, Mn) of the polymer decreased remarkably. The TGA result showed that the addition of the external cross-linker can enhance the thermal stability of the latex film. Moreover, for the cross-linked adhesive film, the shear strength was improved greatly while at the sacrifice of loop tack and peel strength, when compared with the uncross-linked counterparts. Besides, dynamic mechanical analysis (DMA) was also used to evaluate the viscoelastic properties of the acrylate emulsion PSA film.  相似文献   

18.
A new series of hot metl pressure-sensitive adhesives, having both clarity and resistance to ultra-violet light, designed for indoorapplications are described.  相似文献   

19.
Optically clear acrylic pressure-sensitive adhesives (PSAs) with different co-monomers were synthesized. This study employed metal chelate aluminum acetylacetonate and zirconium acetylacetonate as curing agents. The optical properties of the acrylic PSAs were examined by UV–visible spectroscopy and a prism coupler. In addition, the adhesion performance was obtained by assessing the peel strength, the tack, and the shear adhesion failure temperature. The decrease in the adhesion performance may be related to a higher crosslinking density, which also resulted in a higher gel content.  相似文献   

20.
Latex‐based butyl acrylate (BA)/acrylic acid (AA)/2‐hydroxyethyl methacrylate (HEMA) pressure sensitive adhesive (PSA) films with various microstructures were heated to improve their performance. The treated PSA films showed significantly better performance than original latex‐based PSA films with similar polymer microstructures. The effect of the heat treatment depended on the polymer microstructure of the untreated PSA films (or corresponding latices). Decreasing the amount of very small sol polymers (i.e., Mx < 2Me) in gel‐free untreated PSA films, or both very small (i.e., Mx < 2Me) and very large sol polymers (i.e., Mx > 20Me) in gel‐containing untreated PSA films led to treated PSA films with significantly better performance. (Note: Me is the molecular weight between two adjacent entanglement points in a polymer material.) In addition, simultaneously increasing the sol polymer molecular weight (Mw) as well as the size of the chain segments between two adjacent cross‐linking points (Mc) of the gel polymer in the original PSAs resulted in treated PSA films with better performance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号