首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
S.C. Lee 《Powder Technology》2008,186(1):99-106
Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained from triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by employing the parameters involved in the yield function of sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed Cap model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocrystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model and the Drucker/Prager Cap model agreed well with experimental data under cold compaction. Finite element results and experimental data also, show that relative density distribution of nanocrystalline ceramic powder compacts is nonuniform compared to the conventional micron powder compacts at the same averaged relative density.  相似文献   

2.
The paper introduces a method for characterization of silicone rubber and titanium powder in high velocity compaction using the split Hopkinson set-up. The impact test data has been used to estimate parameters in constitutive models for rubber and powder. A finite element study has been performed with different geometrical design of the high velocity compaction of titanium powder against an aluminium mandrel using a rubber mould as pressing medium. One goal of this study is to investigate if and how the manufacturing method can be applied for making dental copings.A conclusion of the experimental work is that it is possible to characterize rubber material and powder material for high velocity compaction of metal powder by the use of a modified split Hopkinson pressure bar set-up. The numerical simulation shows qualitatively good agreement with the experience from practical tests. In conclusion, the work shows the possibility to numerically study the geometric design and to optimize the densification behaviour of a complex high velocity compaction process.  相似文献   

3.
In this study, mullite–zirconia (ZrO2) composites were fabricated by hot pressing sintering method. The effects of sintering temperature and holding time on the microstructures, phase compositions and mechanical properties of the composites were investigated. The results indicated that the size of t-ZrO2 grain varies with sintering temperature and holding time, and the maximum flexural strength of 674.05?MPa and fracture toughness of 12.08?MPam1/2 are obtained when the sintering temperature is 1500?°C with holding times of 20 and 60?min, respectively. Finite element method was employed to analyze the relationship between grain size and mechanical properties of mullite–ZrO2 composites for the first time. The results showed that the maximum stress on mullite–ZrO2 interface increases with the growth of t-ZrO2 grain size, which enhances the generation and propagation of cracks on grain boundaries significantly and degrades the flexural strength and fracture toughness of the mullite–ZrO2 composite ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号