共查询到20条相似文献,搜索用时 15 毫秒
1.
Sung Won Kim 《Chemical engineering science》2004,59(18):3955-3963
Flow behavior and flow regime transitions were determined in a circulating fluidized bed riser (0.203 m i.d. × 5.9 m high) of FCC particles (, ). A momentum probe was used to measure radial profiles of solids momentum flux at several heights and to distinguish between local net upward and downward flow. In the experimental range covered (; ), the fast fluidization flow regime was observed to coexist with dense suspension upflow (DSU). At a constant gas velocity, net downflow of solids near the wall disappeared towards the bottom of the riser with increasing solids mass flux, with dense suspension upflow achieved where there was no refluxing of solids near the riser wall on a time-average basis. The transition to DSU conditions could be distinguished by means of variations of net solids flow direction at the wall, annulus thickness approaching zero and flattening of the solids holdup versus Gs trend. A new flow regime map is proposed distinguishing the fast fluidization, DSU and dilute pneumatic transport flow regimes. 相似文献
2.
Enrico Grieco Luca Marmo 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2008,140(1-3):414-423
The pressure balance along the solid circulation loop of a circulating fluidized bed equipped with a solid flux regulating device has been modelled and the influence of the pressure balance on the riser behaviour has been predicted.The solid circulation loop has been divided into many sections, where the pressure drop was calculated independently: riser, cyclone, standpipe, control device and return duct. A new theoretical model, that is able to predict the pressure losses in the return path of the solid from the standpipe to the riser, has been built. A new correlation for cyclone pressure loss with very high solid loads has been found on the basis of experimental data.The pressure loss in the riser has been calculated by imposing the closure of the pressure balance, ΣΔP = 0. Once the riser pressure drop had been calculated, the holdup distribution along the riser was obtained by imposing a particular shape of the profile, according to the different fluid-dynamics regimes (fast fluidization or pneumatic transport). In the first case, an exponential decay was imposed and the bottom holdup was adjusted to fit the total pressure drop, in the second case, the height of the dense zone was instead varied.The experimental data was used to develop the sub-models for the various loop sections have been obtained in a 100 mm i.d. riser, 6 m high, CFB. The solid was made of Geldart B group alumina particles. The tests were carried out with a gas velocity that ranged between 2 and 4 m/s and a solid flux that ranged between 20 and 170 kg/m2s. A good agreement was found between the model and experimental data. 相似文献
3.
A predictive model was developed for the fully developed zone of a circulating fluidized bed (CFB) riser reactor operating in the fast fluidization regime that overcomes limitations of existing models. The model accounts for the upward flow of gas and solids in the core and downward flow of the two phases in the annulus. Additionally, a numerical solution methodology for the simulation of a riser reactor employing the hydrodynamic model was devised. A simulation was performed using the fast, main Claus reaction to demonstrate the effects of backmixing in the fast fluidization regime. It was found that the molar flow rates of the reactants leaving a fast fluidized CFB riser reactor were significantly higher than those leaving an identical reactor operating in the pneumatic transport regime. 相似文献
4.
Hydrodynamic similarity in the fully developed zone of co-current upward gas-solid two-phase flow systems under different operating conditions was investigated by measuring the axial profiles of pressure gradient, radial profiles of solid concentration and particle velocity in two circulating fluidized bed (CFB) risers of 15.1 and 10.5 m high, with FCC and sand particles, respectively. The experimental data obtained from this work and in the literature show that when the scaling parameter, Gs/(ρpUg), is modified as , a detailed hydrodynamic similitude of the gas-solid flow in the fully developed zone of the risers under different operating conditions can be achieved. Furthermore, the experimental results from different gas-solid flow systems also show that as long as remains constant, there is the same solid concentration in the fully developed zone of different CFB risers with different particles. With the same , the local solid concentrations, the descending particle velocities, the cluster frequencies and the solid concentrations inside clusters in the fully developed zone of the risers all display the same axial and radial distribution, respectively. In other words, the empirical similarity parameter, , appears to have incorporated the effects of operating parameters (Gs and Ug), so that, the gas-solid flow in the fully developed zone of CFB risers under those different operating conditions but having the same shows similar micro- and macro-hydrodynamic characteristics. The study shows that the empirical similarity parameter, , is also independent of the upward gas-solid flow systems. 相似文献
5.
A series of experiments was conducted in a 0.3-m diameter circulating fluidized bed (CFB) cold model to evaluate the operating flow regimes and their transitions. A single unambiguous experimental method was developed to identify the transitions between CFB operating regimes. Experiments were conducted at riser gas velocities ranging from dense phase turbulent, through fast fluidization (S-shape riser pressure profile), and up to dilute-phase flow regimes. A transient method was applied to a low density, Geldart Type B, cork bed material. Two distinct transition velocities were found by analyzing the time required to empty out all solids from the riser of the CFB after cutting off solids flow. The lowest transition velocity marked the transition between the dense-phase turbulent and the fast fluidization flow regimes, while a higher or second transition represented the transition between the fast fluidization and the dilute-phase flow regimes. Based on the experimental results, the axial pressures and its fluctuations along the riser exhibited markedly distinct profiles in each of the three different operating flow regime regions as defined by these two transport velocities. 相似文献
6.
The thickness of downward-flowing annular wall layers in circulating fluidized bed risers has been determined in the literature based on measured radial profiles of both local particle velocity and solids flux. The thickness of the wall layer is shown to be larger based on solids flux profiles than when based on particle velocity profiles, because fluctuations in local instantaneous particle velocity are correlated with fluctuations in local solids concentration. A new correlation is developed to predict the time-average thickness of the downflowing particle streamer layer based on solids flux measurements as a function of the cross-sectional average voidage. It successfully accounts for the variation of the wall layer thickness with axial location and solids circulation rate. 相似文献
7.
Flow phenomena in the exit zone of a circulating fluidized bed 总被引:2,自引:0,他引:2
Ulrike Lackermeier Joachim Werther 《Chemical Engineering and Processing: Process Intensification》2002,41(9):623-783
An experimental investigation of the gas and solids flow in a pilot-scale circulating fluidized bed (CFB) cold model with two different abrupt exit configurations (L-shape and extended top) has been carried out. Measurements of axial pressure profiles, high-speed video images of the flow phenomena at the wall as well as local optical probe measurements inside the exit zone are presented. Contrary to published results obtained in bench-scale CFB risers the axial profiles of the apparent solids volume concentration obtained by pressure measurements showed no indication of an increased solids hold-up in the vicinity of the exit, which confirms the conclusion by Pugsley et al. (Can. J. Chem. Eng. 75 (1997) 1001) that this is a scale effect. The local probe measurements showed the well-known core–annulus flow structure prevailing until the riser top. In the vicinity of the exit this flow structure is superimposed by a strong horizontal velocity component directed to the exit duct. In comparison to the conventional L-shaped abrupt exit the extended top does not increase the solids inventory in the riser. 相似文献
8.
Gas/solid and catalytic gas phase reactions in CFBs use different operating conditions, with a strict control of the solids residence time and limited back-mixing only essential in the latter applications. Since conversion proceeds with residence time, this residence time is an essential parameter in reactor modelling. To determine the residence time and its distribution (RTD), previous studies used either stimulus response or single tracer particle studies.The experiments of the present research were conducted at ambient conditions and combine both stimulus response and particle tracking measurements. Positron emission particle tracking (PEPT) continuously tracks individual radioactive tracer particles, thus yielding data on particle movement in “real time”, defining particle velocities and population density plots.Pulse tracer injection measurements of the RTD were performed in a 0.1 m I.D. riser. PEPT experiments were performed in a small ( I.D.) riser, using 18F-labelled sand and radish seed. The operating conditions varied from 1 to 10 m/s as superficial velocity, and 25- as solids circulation rate.Experimental results were compared with fittings from several models. Although the model evaluation shows that the residence time distribution (RTD) of the experiments shifts from near plug flow to perfect mixing (when the solids circulation rate decreases), none of the models fits the experimental results over the broad (U,G)-range.The particle slip velocity was found to be considerably below the theoretical value in core/annulus flow (due to cluster formation), but to be equal at high values of the solids circulation rate and superficial gas velocity.The transition from mixed to plug flow was further examined. At velocities near Utr the CFB-regime is either not fully developed and/or mixing occurs even at high solids circulation rates. This indicates the necessity of working at U> approx. ( to have a stable solids circulation, irrespective of the need to operate in either mixed or plug flow mode. At velocities above this limit, plug flow is achieved when the solids circulation rate . Solids back-mixing occurs at lower G and the operating mode can be described by the core/annulus approach. The relative sizes of core and annulus, as well as the downward particle velocity in the annulus (∼Ut) are defined from PEPT measurements.Own and literature data were finally combined in a core/annulus vs. plug flow diagram. These limits of working conditions were developed from experiments at ambient conditions. Since commercial CFB reactors normally operate at a higher temperature and/or pressure, gas properties such as density and viscosity will be different and possibly influence the gas-solid flow and mixing. Further tests at higher temperatures and pressures are needed or scaling laws must be considered. At ambient conditions, reactors requiring pure plug flow must operate at and . If back-mixing is required, as in gas/solid reactors, operation at and is recommended. 相似文献
9.
Very little information on the heat transfer to the ceiling of a circulating fluidized bed (CFB) boiler is available in the published literature though it constitutes a significant part of the furnace heat absorption. So, to explore this less-known heat transfer process a series of experiments were conducted at four different superficial gas velocities and three external solids circulation rates in a CFB pilot plant with a riser having a height of 5 m and a cross section of . The experimental results suggest that both solids circulation rates and superficial gas velocities had a significant influence on the local heat transfer to the ceiling close to the riser exit to the gas solids separator. However, on the ceiling, opposite of the exit, solids circulation rates and superficial gas velocities had only a minor influence on the local heat transfer coefficients. 相似文献
10.
In the last decade, cocurrent downflow circulating fluidized bed reactors, called “downer” reactors, have been proposed as an alternative to upflow circulating fluidized bed, or “riser”, reactors. In this paper, published results on downer studies are summarized and future directions of research are recommended. Downer reactors are shown to have several distinct advantages over upflow circulating fluidized bed reactors and can potentially be used in many industrial processes, mainly due to a more uniform gas and solids flow structure compared with risers. 相似文献
11.
The development of gas and solids flow structure was studied in a 9.5 m high and 0.10 m diameter, gas-solids cocurrent downflow circulating fluidized bed (downer). Local solids concentration and particle velocity were measured using two separate optical fibre probes at different radial positions on several axial levels along the downer. The results show that the flow development is significantly influenced by the operating conditions. For most of the conditions under which the experiments were conducted, the gas-solids flow reaches its fully developed zone within 3 to 8 m away from the entrance. On the other hand, the development zone can extend as long as the downer itself, under certain conditions. When the solids circulation rate is over 100 kg/m2s, an increasing solids circulation rate largely extends the length of radial flow development. It is found that the flow developments in the core and at the wall are not quite simultaneous. For solids concentration, the core develops more quickly at low gas velocities and the wall region develops faster at high gas velocities. For particle velocity, higher gas velocity speeds up the development of the wall region but does not significantly affect the development of the core region. The wall region is much more sensitive to the change of superficial gas velocity than the core region. At high superficial gas velocities (> 7 m/s), a “semi-dead” region is observed in the fully developed zone adjacent to the wall where the dilute solids are moving at a very low velocity. 相似文献
12.
Hydrodynamic modeling of a circulating fluidized bed 总被引:1,自引:0,他引:1
Hydrodynamics plays a crucial role in defining the performance of circulating fluidized beds (CFB). The numerical simulation of CFBs is very important in the prediction of its flow behavior. From this point of view, in the present study a dynamic two dimensional model is developed considering the hydrodynamic behavior of CFB. In the modeling, the CFB riser is analyzed in two regions: The bottom zone in turbulent fluidization regime is modeled in detail as two-phase flow which is subdivided into a solid-free bubble phase and a solid-laden emulsion phase. In the upper zone core-annulus solids flow structure is established. Simulation model takes into account the axial and radial distribution of voidage, velocity and pressure drop for gas and solid phase, and solids volume fraction and particle size distribution for solid phase. The model results are compared with and validated against atmospheric cold bed CFB units' experimental data given in the literature for axial and radial distribution of void fraction, solids volume fraction and particle velocity, total pressure drop along the bed height and radial solids flux. Ranges of experimental data used in comparisons are as follows: bed diameter from 0.05-0.418 m, bed height from 5-18 m, mean particle diameter from 67-520 μm, particle density from 1398 to 2620 kg/m3, mass fluxes from 21.3 to 300 kg/m2s and gas superficial velocities from 2.52-9.1 m/s.As a result of sensitivity analysis, the variation in mean particle diameter and superficial velocity, does affect the pressure especially in the core region and it does not affect considerably the pressure in the annulus region. Radial pressure profile is getting flatter in the core region as the mean particle diameter increases. Similar results can be obtained for lower superficial velocities. It has also been found that the contribution to the total pressure drop by gas and solids friction components is negligibly small when compared to the acceleration and solids hydrodynamic head components. At the bottom of the riser, in the core region the acceleration component of the pressure drop in total pressure drop changes from 0.65% to 0.28% from the riser center to the core-annulus interface, respectively; within the annulus region the acceleration component in total pressure drop changes from 0.22% to 0.11% radially from the core-annulus interface to the riser wall. On the other hand, the acceleration component weakens as it moves upwards in the riser decreasing to 1% in both regions at the top of the riser which is an important indicator of the fact that hydrodynamic head of solids is the most important factor in the total pressure drop. 相似文献
13.
Mitali Das 《Powder Technology》2007,178(3):179-186
Segregation and mixing effects of binary mixtures of particles having difference in sizes and densities were studied in 0.1016 m-diameter riser of a circulating fluidized bed at gas velocities between 2.01 and 4.681 m/s and solids circulation rate between 12.5 and 50 kg/m2 s. Two groups of bed materials (three quartz sand-spent fcc catalyst mixtures with different initial mass % of sand and two coal-iron mixtures, one with almost same sizes but with different densities and the other having both different sizes and densities) were used. Using local axial mass % of heavier/coarser particles and their mean sizes the extent of segregation was evaluated. The influence of operating conditions like superficial gas velocity and solids circulation rate on segregation was examined and found that with their increase segregation effects generally tend to decrease and a uniform mixture conforming to initial composition of the mixture results. Using the data available in the literature and those of the present authors an empirical correlation to obtain the extent of segregation in CFBs has been proposed. 相似文献
14.
Ying Zheng Jing-Xu Zhu Jianzhang Wen Steve A. Martin Amarjeet S. Bassi Argyrios Margaritis 《加拿大化工杂志》1999,77(2):284-290
Based on experimental results from a 7.6 cm I. D. and 3 m high liquid–solid circulating fluidized bed, the liquid–solid circulating fluidization regime has been separated into two zones: the initial circulating fluidization zone and the fully developed circulating fluidization zone. The distinct hydrodynamic behavior and the influence of particle properties in the two circulating fluidization zones have been studied. The overall flow structure in LSCFB, although still somewhat non–uniform, is much more uniform than that in a gas-solid CFB. Our experimental results also show that the axial flow characteristics and the regime transition can be strongly affected by the particle density. The stable operation range of the circulating fluidization system and the influences of some associated factors, such as the solids inventory and the particle density, were also investigated for the first time. 相似文献
15.
CFBs are increasingly used for both gas-catalytic and gas-solid reactions. The conversion is a function of the gas hydrodynamics, subject of the present research.Available literature on the gas mixing in the riser of a CFB shows contradictory results: some investigators neglected back-mixing of gas, whereas others report a considerable amount of back-mixing in CFB risers. The present paper reports experimental findings obtained in a 0.1 m I.D. riser, for a wide range of combined superficial gas velocity (U) and solid circulation flux (G). The gas flow mode (plug vs. mixed) is strongly affected by the operating conditions, however with a dominant mode within a specific (U, G)-range. Sand was used as bed material. The superficial gas velocity was varied from 5.5 to 8.3 m/s, the solids circulation flux was between 40 and 170 kg/m2 s. A tracer pulse response technique was used with a pulse of propane injected at the bottom and detected at the riser exit. The cumulative response curves, F(t), define (i) an average residence time (t50) obtained for F(t) = 0.5; and (ii) the slope of the curves (a steeper one corresponding with more pronounced plug flow) and expressed in terms of a span, σ. These parameters (t50 and σ) define the gas flow mode. A quantitative comparison of experimental results with literature RTD-models is inconclusive although the occurrence of both mixed flow and plug flow is evident, and (U, G)-dependent. The experimental results are expressed in empirical design equations, and the comparison of predicted and experimental results is fair: low values of σ determine the plug flow regimes, whereas back-mixing is more pronounced at higher value of σ. Experiments with similar systems might favor plug flow or mixing as function of the combined (U, G)-values. The introduction of the RTD-function in reaction rate equations can improve the prediction of the gas-conversion in a riser-reactor. 相似文献
16.
Benjapon Chalermsinsuwan Thatchai Samruamphianskun Pornpote Piumsomboon 《Chemical Engineering Research and Design》2014
The effect of the operating parameters on the system hydrodynamics and mixing inside two circulating fluidized bed reactor (CFBR) risers with different ring baffle configurations were investigated using computational fluid dynamics simulations and a 24 factorial experimental design analysis. The operating parameters varied were the gas inlet velocity, and the mass flux, diameter and density of the solid particles, while the response variables were the standard deviation of the solid volume fraction (SVF) in the radial direction (SDSVF-RD) and the average SVF (ASVF). The results from the two CFBR risers with different ring baffle configurations showed a similar trend. The operating parameters that significantly affected the ASVF in both modified CFBR risers were the inlet gas velocity and solid particle mass flux, while those that significantly affected the SDSVF-RD were the inlet gas velocity and the inlet gas velocity–solid particle diameter–solid particle density interaction. For these systems, the lowest and highest ASVF was approximately 0.07 and 0.20, respectively, while the lowest and highest SDSVF-RD was 0.01 and 0.04, respectively. The low variability of the solid particle distribution and the high solid particle concentration will be suitable for chemical reactions. All the obtained results could be explained in terms of the system hydrodynamics. Finally, regression models to predict the mean solid particle concentration and variability of solid particle distribution in the system were obtained. 相似文献
17.
A method to determine local mass flux measurements within the riser of a circulating fluidized bed using the rate of impingement of particles on the surface of a piezoelectric pressure transducer is described. Statistically designed experiments with various solids circulation rates and riser gas velocities were conducted in the riser of a cold flow circulating fluidized bed to verify the accuracy of the method. Also, various techniques to relate the impingement rate to mass flux were employed. It is believed that this method delivers results in situations where more standard methods, such as isokinetic sampling, fail. 相似文献
18.
S.A. Razzak 《Powder Technology》2010,199(1):77-5662
Axial distribution of phase holdups was studied in the riser of a gas-liquid-solid circulating fluidized bed (GLSCFB). The effects of gas and liquid superficial velocities as well as solids circulation rate on radial distribution of phase holdups at different axial locations were investigated. Electrical resistance tomography (ERT) and optical fiber probe were employed online in the experiments for a precise determination of phase holdups. An empirical model was developed for the determination of gas bubbles in analysis of data obtained by fiber optic sensor. Gas holdup was higher at the central region of the riser and increased axially due to coalescence of small bubbles and decrease of hydrostatic pressure at higher levels in the riser. This led to an increase in solids holdup in regions close to the wall which was slightly higher than the solids holdup at the wall. Both solids and liquid holdups were lower in the central region and increased radially towards the wall. Gas holdup decreased with increasing solids circulation rate but opposite trend was observed for solids holdup. Solids circulation rate had negligible effect on liquid holdup at lower axial locations compared to top of the riser. Cross-sectional average of solids, gas and liquid holdups did not change significantly at higher liquid superficial velocities. 相似文献
19.
A simple hydrodynamic model for Circulating Fluidized Beds has been developed. The mathematical model, based on the core-annulus flow structure, is shown to be able to predict the two-phase flow characteristics and it requires only two measurable steady-state parameters, namely the experimental average voidage profile along the riser, or equivalently the pressure distribution, and the net solids circulation rate. The model has been successfully tested using recently obtained literature data covering a variety of reactor configurations and operating conditions. 相似文献
20.
Wenyuan Wu Andrew L. Gerhart Zumao Chen Paul A. Dellenback Pradeep K. Agarwal 《Powder Technology》2001,120(3):151-158
The on-line measurement of solids flowrate is important to numerous industrial processes. This paper considers a variation of impact-type solids flow meters suitable for use in numerous applications, including circulating fluidized beds (CFBs). The solids flowrate meter introduced herein is on-line, capable of operation in high temperature environments, and useful for a broad range of flowrates with good linearity, accuracy and fast response time. The flow meter works by measuring the torque that results on a hinged plate when falling solids impact the plate. A theoretical model of the device is developed and its results are compared to experimental data for the operation with various solids. 相似文献