首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titania (TiO2)–silica (SiO2) nanoparticles were synthesized from sprayed droplets of a mixture of TEOS and TTIP by flame spray pyrolysis (FSP). The effect of molar ratio between TEOS and TTIP in the mixture on the particle properties such as particle morphology, average particle diameter, specific surface area, crystal structure, etc., were determined using TEM, XRD, BET, and FT-IR. A UV-spectrometer was also used to measure the absorption spectrum and the band gap energy of the product particles. As the molar ratio of TEOS/TTIP increased by increasing TEOS concentration at the fixed TTIP concentration, the average particle diameter of the mixed oxide nanoparticles increased with maintaining uniform dispersion between TiO2 and SiO2, and crystal structure was transformed from anatase to amorphous. The band gap energy of the TiO2–SiO2 nanoparticles increased with respect to the increase of the molar ratio due to the decrease of width of UV-absorption spectrum. Photocatalytic activity of TiO2–SiO2 composite particles decreased with the concentration of TEOS.  相似文献   

2.
Crystalline TiO2 particles were produced in a tubular flow reactor by chemical vapor synthesis using titanium tetrachloride as a starting material in oxygen containing atmospheres. The dependence of particle size, morphology and crystalline phase of titania on temperature schedules including the reactor temperature, the oxygen preheated temperature and the product cooling measure were explored. It is found that there are two opposite effects of temperature on particle size and crystalline phase content. The particle size distribution, SEM and TEM of resulting powders show that the grain size is controlled by the relative magnitudes of the nucleation rate and growth rate, both of them being subject to the temperature schedules. XRD indicates that particles crystalline phase is predominately anatase and the rutile content increment is not consistent with temperature increase. Anatase titania can be converted to rutile by addition of crystal modifier AlCl3. The element analysis by EDS shows that Al enriches on the particle outer surface.  相似文献   

3.
Ultrafine titania particles were synthesized by hydrolysis of titanium tetraisoproxide (TTIP) in the nanodroplets of water/NP-5/cyclohexane microemulsions. The as-prepared particles were amorphous, transformed into the anatase phase at 450°C, and completely into the rutile phase at 700°C. The amorphous-to-anatase phase transition temperature decreased with increasing water/surfactant molar ratio. With increasing temperature from 500 to 900°C, the crystallite size increased about twice from 11.7 to 24.4 nm, while the size of the secondary particles, agglomerates of the primary panicles, increased by a factor of about 10. The particles grew largely by intra-agglomerate densification below 700°C, whereas they grew by interagglomerate densification above 700°C. The anatase phase formed at 500-600°C showed considerable photoactivity for the degradation of phenol, whereas both the amorphous phase at 300°C and the rutile phase at 700°C were almost inactive for this reaction.  相似文献   

4.
We have prepared TiO2 nanoparticles by the hydrolysis of titanium tetraisopropoxide (TTIP) using HNO3 as a peptizing agent in the hydrothermal method. The physical properties of nanosized TiO2 have been investigated by TEM, XRD and FT-IR. The photocatalytic degradation of orange II has been studied by using a batch reactor in the presence of UV light. When the molar ratio of HNO3/TTIP was 1.0, the rutile phase appeared on the titania and the photocatalytic activity decreased with an increase of HNO3 concentration. The crystallite size of the anatase phase increased from 6.6 to 24.2 nm as the calcination temperature increased from 300 °C to 600 °C. The highest activity on the photocatalytic decomposition of orange II was obtained with titania particles dried at 105 °C without a calcination and the photocatalytic activity decreased with increasing the calcination temperature. In addition, the titania particles prepared at 180 °C showed the highest activity on the photocatalytic decomposition of orange II. This paper was prepared at the 2004 Korea/Japan/Taiwan Chemical Engineering Conference held at Busan, Korea between November 3 and 4, 2004.  相似文献   

5.
Porous titania powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP) and were characterized at various calcination temperatures by nitrogen adsorption, X-ray diffraction, and microscopy. The effect of HCl or NH4OH catalysts added during hydrolysis on the crystallinity and porosity of the titania powders was investigated. The HCl enhanced the phase transformations of the titania powders from amorphous to anatase as well as anatase to rutile, while NH4OH retarded both phase transformations. Titania powders calcined at 500°C showed bimodal pore size distributions: one was intra-aggregated pores with average pore diameters of 3–6 nm and the other was interaggregated pores with average pore diameters of 35–50 nm. The average intra-aggregated pore diameter was decreased with increasing HCl concentration, while it was increased with increasing NH4OH concentration.  相似文献   

6.
Spherical particles constituted by nanocrystals of titanium oxide TiO2 have been prepared through reactive microemulsion precipitation. A water-in-oil microemulsion, added with a suitable emulsifier, has been used. The effect of the process parameters (water to oil ratio, type and amount of surfactant, concentration of precursor solution, mixing velocity) on the final characteristics has been investigated, in terms of structural phase and particle size. The titania nanopowders were characterized by means of X-ray diffraction, thermogravimetric and differential thermal analyses and scanning electron microscopy. The results obtained by different process conditions showed the development of both titania rutile and anatase spherical particles, with particle size ranging from tens to hundreds of nanometers.  相似文献   

7.
Flame aerosol synthesis has been employed to synthesize nanoscale titania (TiO2) particles by oxidation of titanium tetraisopropoxide (TTIP) vapor. The influence of reactant mixing and flow rates on particle morphology, size and phase composition has been studied for two different diffusion flame configurations using transmission electron microscopy, X-ray diffraction and photon correlation spectroscopy. Spherical, loosely agglomerated powders with a minimum secondary particle size of 90 nm and a rutile content of up to 35 w % were obtained at low oxygen flow rates in the double diffusion flame, while large anatase-rich aggregates formed at high oxygen flow rates. It is shown that the degree of aggregation of the as-synthesized particles is represented better by the ratio of dPCS3/dTEM3, than by the ratio of dBET3/dXRD3 commonly used in literature. The differences observed in particle morphology and phase composition can be explained by considering their time-temperature history as a function of flame configuration and gas flow rates.  相似文献   

8.
We report an in situ TEM investigation of the growth and transformation in nanometer-sized titania powders. The powders were produced through precipitation of titanium tetrachloride under different pH conditions. The initial phase of the produced powders was amorphous or was a mixture of anatase and brookite according to the pH conditions. During calcination, the anatase particles grew and transformed into rutile. The transformation temperature increased with increasing pH value. In situ TEM observations showed that the anatase particles were absorbed into rutile, and then rutile particles grew by coalescence. Furthermore, small pores were observed to form in samples prepared with high pH from the effects of hydroxyl ions and zeta potential. Pore formation increased the surface area, which delayed the transformation and nucleation of rutile. This explains the difference of growth and transformation of titania powders produced under different pH conditions during calcination.  相似文献   

9.
Silica–titania mixed oxides have excellent properties, such as a low thermal expansion coefficient and a refractive index that can be adjusted by changing the Ti content. However, when the Ti content increases, silica and titania phases in silica–titania mixed oxides can separate. This phase separation leads to the precipitation of the titania component as rutile or anatase crystals. When silica–titania mixed oxides undergo phase separation, their properties become unstable; for example, the refractive index of the particles becomes non-uniform. Therefore, it is preferable to synthesize silica–titania mixed oxides in an amorphous state without causing phase separation. Based on our previous studies on particle size control in silica synthesis, we employed a dry process using organosilicon compounds to synthesize silica–titania mixed oxides. In this study, spherical amorphous silica–titania mixed oxide particles were obtained via flame synthesis using organosilicon and organotitanium compounds. The purpose of this study was to characterize the obtained powder and explore the possibility of controlling particle size during synthesis. By studying the dry process synthesis of spherical silica–titania mixed oxide particles, we confirmed the relationships: between the Si/Ti molar ratio and the obtained crystal structure and between the adiabatic flame temperature and the particle size.  相似文献   

10.
Nanosized pure TiO2 particles were prepared by hydrolysis of TTIP in the sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. TiO2/SiO2 nanoparticles were also prepared from TEOS as a silicon source and TTIP as a titanium source. These particles were characterized by TEM, XRD, FT-IR, BET, TGA and DTA. From thermal analysis and XRD analysis, the anatase structure of pure titania appeared in the 300–600 °C calcination temperature range and the rutile structure was showed above 700 °C. However, no rutile phase was observed for the TiO2/SiO2 particles up to 800 °C. The crystallite size decreased and the surface area of TiO2/SiO2 particles monotonically increased with an increase of the silica content. From FT-IR analysis, the band for Ti–O–Si vibration was observed and the band intensity for Si–O–Si vibration increased with an increase of the silica content. The micrographs of TEM showed that the TiO2/SiO2 nanoparticles had a spherical and a narrow size distribution. In addition, TiO2/SiO2 particles showed higher photocatalytic activity than pure TiO2 and the TiO2/SiO2 (90/10) particles showed the highest activity on the photocatalytic decomposition of p-nitrophenol.  相似文献   

11.
Carbon coated titanium dioxide (TiO2) nano powder has been synthesized by combustion of TiCl4 precursor in a laminar diffusion flame using inexpensive liquid petroleum gas (LPG) as a fuel, air as an oxidant, nitrogen gas as a carrier, and characterized with regard to phase(s), surface area, carbon content, morphology and optical absorption. The product is shown to contain both the anatase and rutile phases and exhibits (i) decrease in rutile content, (ii) increase in BET specific surface area, and (iii) increase in the amount of carbon (soot) present with increase in fuel flow rate. Further, the maximum attainable temperature depends on carbon content and determines the phase content and morphology of nano powder, e.g. spherical particles result and display reduced agglomeration when carbon content is more. The rutile phase essentially emerges by transformation of the anatase phase, formed initially with lattice parameters somewhat smaller than the bulk due to oxygen deficiency. On the other hand, use of oxygen (instead of air) leads to formation of spherical particles (average diameter ~104 nm) of a pure anatase phase (as transformation to rutile phase is totally suppressed) with lattice parameters, a=3.776(5) Å, c=9.507(5) Å, close to bulk.  相似文献   

12.
Role of Particle Substructure in the Sintering of Monosized Titania   总被引:3,自引:0,他引:3  
Monosized titania particles (∼0.35-μ diameter) prepared by controlled hydrolysis of titanium tetraethoxide in ethanol were found to be porous agglomerates of ∼6-nm primary particles. The sintering behavior of compacts constituted of monodispersed agglomerates was evaluated, and changes in macroscopic dimensions were correlated with changes in particle microstructure and chemistry. The total volume shrinkage during sintering was ≥87%. Five contributions to the total shrinkage and the temperature ranges for the associated processes were identified: removal of chemisorbed water (from ambient to 250°C), crystallization to anatase (between 250° to 425°C), intra-agglomerate densification (425° to 800°C), conversion of anatase to rutile (600° to 800°C), and inter-agglomerate densification (>800°C). Approximately one-half the compact shrinkage was the result of agglomerate substructure changes. Studies of the agglomerate structural evolution indicated the intra-agglomerate densification and crystallite growth rates are the secondary factors, after compact packing, that influenced microstructure development.  相似文献   

13.
The effect of germanium oxide (GeO2) addition on the anatase-to-rutile phase transition was investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). TiO2 xerogels containing up to 20 mol% GeO2 were prepared by refluxing and hydrolyzing titanium tetraisopropoxide (TTIP) and germanium butoxide (GB) using nitric acid as a catalyst. The following occurred with increasing amounts of GeO2 in the xerogels: (i) the crystallization temperature of anatase increased from 410° to 565°C and the DTA temperature of the anatase-to-rutile phase transition increased from 676° to 977°C in 20 mol% GeO2-containing xerogel; (ii) the crystallite size of anatase became smaller; (iii) the lattice a-parameter of the anatase showed little change, but the c-parameter decreased up to 20 mol% GeO2; (iv) both the lattice a- and c-parameters of the rutile decreased monotonically. From these results, the added GeO2 is considered to become incorporated into the anatase structure. The following occurred with increasing anatase heating temperature: (i) the lattice c-parameter of the anatase increased gradually and approached the value of pure anatase; and (ii) the chemical composition of the xerogel surfaces, measured by XPS, showed an increase in GeO2 content, indicating the expulsion of GeO2 from the anatase to form an amorphous surface layer. The formation of this amorphous GeO2 surface layer is thought to play an important role in retarding the anatase-to-rutile phase transition by suppressing diffusion between the anatase particles in direct contact, and limiting their ability to act as surface nucleation sites for rutile, as in the case of SiO2 additions. However, GeO2 addition is less effective than SiO2 in retarding the phase transition.  相似文献   

14.
不同晶型纳米二氧化钛的水热合成   总被引:2,自引:1,他引:1  
水热法合成了不同晶型、形貌和大小的纳米二氧化钛。利用X射线衍射(XRD)和透射电镜(TEM)对所得的样品进行了表征。研究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响。结果表明,前驱体pH值是决定产品晶型、晶粒尺寸和形貌的主要因素。随着水热反应温度的升高,纳米二氧化钛的晶粒尺寸逐渐变大,但pH=3.0时所形成的锐钛矿型纳米二氧化钛的晶粒尺寸却几乎不变;随着水热反应时间的延长,金红石型纳米二氧化钛晶粒的生长速度最快,而锐钛矿型的纳米二氧化钛的晶粒生长速度则最慢。  相似文献   

15.
TiO2, TiO2/Ag and TiO2/Au photocatalysts exhibiting a hollow spherical morphology were prepared by spray pyrolysis of aqueous solutions of titanium citrate complex and titanium oxalate precursors in one-step. Effects of precursor concentration and spray pyrolysis temperature were investigated. By subsequent heat treatment, photocatalysts with phase compositions from 10 to 100% rutile and crystallite sizes from 12 to 120 nm were obtained. A correlation between precursor concentration and size of the hollow spherical agglomerates obtained during spray pyrolysis was established. The anatase to rutile transformation was enhanced with metal incorporations and increased precursor concentration. The photocatalytic activity was evaluated by oxidation of methylene blue under UV-irradiation. As-prepared TiO2 particles with large amounts of amorphous phase and organic residuals showed similar photocatalytic activity as the commercial Degussa P25. The metal incorporated samples showed comparable photocatalytic activity to the pure TiO2 photocatalysts.  相似文献   

16.
《Powder Technology》2001,114(1-3):197-204
A flame aerosol reactor was used to synthesize Fe(III)-doped titania powders. The processing conditions were controlled to obtain varying ratios of Fe:Ti in the as processed powders. The iron was incorporated into the titania lattice and promoted the conversion of the anatase to the rutile phase. With an increase in the iron dopant concentration, a decrease in the crystal size of the resultant titania particles was observed, along with a conversion to the amorphous state. The defect structure was further explored by Raman spectroscopy, revealing an increased shift and broadening of the anatase peaks with an increasing iron dopant concentration, and was attributed to shrinkage in the grain size. Absorption spectra revealed a shift of the absorption band toward the visible frequencies. Powders with Fe:Ti ratio exceeding 0.8 resulted in a binary mixture that had superparamagnetic characteristics.  相似文献   

17.
In this paper, the effect of titania particles preparation on the properties of Ni–TiO2 electrocomposite coatings has been addressed. Titania particles were prepared by precipitation method using titanium tetrachloride as the precursor. The titanyl hydroxide precipitate was subjected to two different calcinations temperatures (400 and 900 °C) to obtain anatase and rutile titania particles. These particles along with commercial anatase titania particles were separately dispersed in nickel sulfamate bath and electrodeposited under identical electroplating conditions to obtain composite coatings. The electrodeposited coatings were evaluated for their microhardness, wettability, corrosion resistance, and tribological behavior. The variation of microhardness with current density exhibited a similar trend for all the three composite coatings. The composite coating containing anatase titania particles exhibited higher microhardness and improved wear resistance. However, the corrosion resistance of the composite coating containing commercial titania powder was superior to that of plain nickel, Ni–TiO2 composite coatings containing anatase and rutile titania particles. The poor corrosion resistance of these composite coatings was attributed to the higher surface roughness of the coatings. This problem was alleviated by incorporating ball-milled titania powders. The composite coatings with higher surface roughness were modified with a low surface energy material like fluoroalkyl silane to impart hydrophobic and superhydrophobic properties to the coatings. Among these coatings, Ni–TiO2–9C coating exhibited the highest water contact angle of 157°.  相似文献   

18.
TiO2 nanoparticles were prepared using hydrolysis of titanium tetraisopropoxide in W/O microemulsions consisting of water, nonionic Brij series surfactants with different hydrophilic and Tween series surfactants with different hydrophobic group, and cyclohexane. The properties of these particles were characterized by TEM, XRD, FT-IR, TGA and DTA. The photocatalytic degradation of p-nitrophenol has been studied in order to compare the photocatalytic activity of prepared nanosized titania. TiO2 particles calcined at 500 °C have a stable anatase phase which has no organic surfactants and the product completely transforms into the anatase phase above 300 °C and the rutile phase begins to appear at 600 °C regardless of surfactants. The particles are shown to have a spherical shape and have an uniform size distribution but the shape becomes distorted with a decrease of hydrophilic group chain length according to rapid hydrolysis of water and titanium alkoxide. In addition, the crystallite size and crystallinity increase with a decrease of hydrophilic and hydrophobic group chain length and an increase of calcination temperature. The photocatalytic activity increases with an increase of hydrophilic and hydrophobic group length and the titania calcined at 500 °C shows the highest activity on the photocatalytic degradation of p-nitrophenol regardless of surfactants.  相似文献   

19.
Titania–hydroxyapatite composites were prepared by soaking compacts of a powder mixture consisting of crystalline titania and calcium carbonate (vaterite) to form apatite in simulated body fluid (SBF). The apatite crystal formed on compacts in SBF at 37 °C within 2 days. The apatite-forming ability of the mixtures was much higher than that of titania crystals such as anatase or rutile on their own. Calcium carbonate (vaterite), which has high solubility in the aqueous solution, plays an important role in the apatite formation; the dissolution is suggested to increase the supersaturation of the apatite in SBF. Formation of titanium hydroxide groups, which may induce the apatite formation, is drastically promoted on the powder-compacts by the soaking in SBF, independently of the structures of the titania crystals (anatase or rutile). The apatite formation on the compact of the titania–calcium carbonate (vaterite) powder mixture containing the anatase phase occurs in a shorter period than that on the one of titania (rutile)–calcium carbonate (vaterite). Crystalline titania (anatase phase) is suggested to be particularly effective in inducing the apatite nucleation.  相似文献   

20.
Dopants in Flame Synthesis of Titania   总被引:2,自引:0,他引:2  
The effect of dopants on the characteristics of titania particles made by oxidation of TiCl4 in a laminar diffusion flame reactor is presented. Introduction of dopant SiCl4 inhibits the transformation of anatase to rutile, due to the formation of interstitian solid solution of SiO2 and TiO2. Silica decreases the sintering rate of titania and decreases the primary particle size, and, as a result, the specific surface area increases. Intruduction of SnCl4 enhances the transformation of anatase to rutile, due to the similar crystalline structure of SnO2 and rutile titania. However, the presence of SnO2 and rutile titania. However, the presence of SnO2 does not affect the primary particle size or the specific surface area of titania particles. Introduction of AICI3 enhances the transformation of anatase to rutile, due to the formation of excess oxygen vacancies as Al2O3 and TiO2 form a substitutional solid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号