首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nan Xia  Tao Li  Hui Zhu  Guohua Deng 《Polymer》2011,52(20):4581-4589
Crystallization kinetics and behavior of PCL side chains in polymer co-brushes constituted with PCL and PEO side chains alternatively attached on poly(styrene-alt-maleimide) backbones have been determined using in-situ FT-IR and DSC methods. Avrami analysis shows the exponent n increasing from one at 10 °C to two at 30 °C, demonstrating confined crystallization of PCL side chains through homogeneous or heterogeneous nucleation. PLM morphological characterization displays typical spherulites of which size is dependent on the crystallization temperature and further AFM visualization shows typical PCL lamellae at 30 °C and broken lamellae at 10 °C embedded within PEO + backbone matrix inside of spherulites. Such lamellar structure explains the confined crystallization with Avrami exponent n ≤ 2. Formation of the broken lamellae can further clarify the reason why Avrami exponent decreases to n ≈ 1 at 10 °C, that is, homogeneous nucleation in the isolated crystals. Dynamically confined crystallization has been proposed based on their special molecular architecture. Comparing to statically confined crystallization, the construction of confined space and the crystallization process were almost synchronous. The formation of spherulites mesoscopically reveals the entire molecule motion and assembly through a pathway of conventional crystalline polymers and the crystallization of PCL side chains in a space constituted by stiff backbones of poly(styrene-alt-maleimide) plus soft PEO layer microscopically reflects a confined character which has been observed in some conventional block copolymers.  相似文献   

2.
Lu Sun  Lei Zhu  Benjamin S. Hsiao 《Polymer》2004,45(24):8181-8193
The self-assembly and crystallization behavior of a well-defined low molecular weight polyethylene-block-poly(ethylene oxide) (PE-b-PEO) diblock copolymer was studied. The number-average degrees of polymerization for the PE and PEO blocks were 29 and 20, respectively. The molecular weight distribution was 1.04 as determined by size-exclusion chromatography. The PE-b-PEO sample exhibited two melting points at 28.7 and 97.4 °C for the PEO and the PE crystals, respectively. The crystallization of the PE blocks was unconfined, while the crystallization of the PEO blocks was confined between pre-existing PE crystalline lamellae, as demonstrated by simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) studies. In the fully crystalline state, both PE and PEO blocks formed extended-chain crystals with PE chains tilted ∼22° from the lamellar normal and PEO chains parallel to the lamellar normal, as evidenced by two-dimensional WAXD study of shear-oriented samples. Regardless of hydrogen bonding among hydroxyl chain ends in the PEO blocks, interdigitated, single-crystalline layer morphology was observed for both PE and PEO crystals. The partial crystalline morphology, where the PE crystallizes and the PEO is amorphous, had the same overall d-spacing as the fully crystalline morphology. A double-amorphous PEO layer sandwiched between neighboring PE crystalline layers was deduced based on a chain conformation study using Fourier transform infrared. The confined crystallization kinetics for PEO blocks was investigated by differential scanning calorimetry, which could be explained by a heterogeneous nucleation mechanism. The slower crystallization rate in the PEO-block than the same molecular weight homopolymer was attributed to the effects of nanoconfinement and PEO chains tethered to the PE crystals.  相似文献   

3.
Tomoki Higa 《Polymer》2010,51(23):5576-5584
The crystal orientation of poly(?-caprolactone) (PCL) blocks in PCL-block-polyethylene (PE) copolymers has been investigated using two-dimensional small-angle X-ray scattering (2D-SAXS) and 2D wide-angle X-ray diffraction (2D-WAXD) as a function of crystallization temperature Tc and thickness of PCL layers dPCL. The PCL blocks were spatially confined in the solid lamellar morphology formed by the crystallization of PE blocks (PE lamellar morphology), an alternating structure of crystallized PE lamellae and amorphous PCL layers. This confinement is expected to be intermediate between hard confinement by glassy lamellar microdomains and soft confinement by rubbery ones, because the crystallized PE lamellae consist of hard PE crystals covered with amorphous (or soft) PE blocks. The 2D-SAXS results showed uniaxial orientation of the PE lamellar morphology after applying the rotational shear to the sample. Therefore, it was possible to investigate crystal orientation of PCL blocks within the oriented PE lamellar morphology. The 2D-WAXD results revealed that the c axis of PCL crystals (i.e., stem direction of PCL chains) was parallel to the lamellar surface normal irrespective of Tc when 16.5 nm ≥ dPCL ≥ 10.7 nm. However, it changed significantly with changing Tc when dPCL = 8.8 nm; the c axis was perpendicular to the lamellar surface normal at 45 °C ≥ Tc ≥ 25 °C while it was almost random at 20 °C ≥ Tc ≥ 0 °C. These results suggest that the PE lamellar morphology plays a similar role to glassy lamellar microdomains regarding spatial confinement against subsequent PCL crystallization.  相似文献   

4.
The morphology of a melt-quenched crystalline-crystalline diblock copolymer, poly(ε-caprolactone)-block-polyethylene (PCL-b-PE), was studied by small-angle X-ray scattering and transmission electron microscopy. The melting behavior of PCL-b-PE was also investigated by differential scanning calorimetry. The melting temperature of PCL blocks, Tm,PCL, was ca. 55 °C and that of PE blocks was ca. 96 °C. Therefore, the PE block always crystallized first during quenching from the microphase-separated melt into various temperatures Tc below Tm,PCL to yield an alternating structure composed of PE lamellae and amorphous layers (PE lamellar morphology), and subsequently the crystallization of PCL blocks started at Tc after some induction period. The PE lamellar morphology was preserved after the crystallization of PCL blocks at low crystallization temperatures (Tc<30 °C), that is, the PCL block crystallized within the PE lamellar morphology. At high crystallization temperatures (45 °C>Tc>30 °C), on the other hand, the crystallization of PCL blocks destroyed the PE lamellar morphology to result in a new lamellar morphology mainly consisting of PCL lamellae and amorphous layers (PCL lamellar morphology). The PE crystals were fragmentarily dispersed in the PCL lamellar morphology.  相似文献   

5.
6.
syndiotactic Polystyrene (sPS) glass crystallizes into the α form when it is heated above the glass transition temperature (Tg, about 100 °C). sPS can be crystallized also into the δ form in the solvent atmosphere at room temperature. In order to trace the structural evolution process, the time-resolved infrared spectral measurements have been performed in the isothermal crystallization from the glass to α form and in the solvent-induced crystallization from the glass to δ form at the various temperatures. Absorbance of crystallization-sensitive infrared bands was plotted against time, from which the crystallization kinetics were analyzed on the basis of Avrami equation: X(t)=1−exp[−(kt)n] where X is a normalized crystallinity, n is an index, k is a rate constant, and t is a time. The isothermal crystallization was investigated also by carrying out the temperature jump experiment of DSC thermograms, giving almost the same results as the infrared spectral measurements. The Avrami index n was 2-5 depending on the crystallization temperature (Tc). The k was also dependent on the Tc, about 10−1-10−4 s−1 and could be fitted reasonably by the equation of crystallization kinetics. An extrapolation of the k vs Tc plot to the negligibly small k value allowed us to predict the temperature at which no crystallization should occur, ca. 100 °C, in good agreement with the observed Tg value. On the other hand, the solvent-induced crystallization was investigated for the first time at the various temperatures from 50 to 9 °C by the time-resolved measurement of infrared spectra. Compared with the experiment at room temperature, the crystallization was highly accelerated at 40-50 °C, while the crystallization rate was reduced remarkably at such a low temperature as 9 °C. The time dependence of infrared absorbance was analyzed for the crystallization-sensitive bands on the basis of Avrami equation as the first approximation, although the crystallization mechanism was more complicated than the isothermal crystallization case. The logarithm of the k value was found to change almost linearly with temperature and an extrapolation to infinitesimally small k value gave a Tg of about −15 °C. That is to say, the glass transition temperature was estimated to shift remarkably from 100 to −15 °C by absorbing solvent molecules or by a plasticizing effect.  相似文献   

7.
A poly(ethylene oxide) diblock copolymer containing a short block of poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PEO-b-PMPCS) has been successfully synthesized via atom transfer radical polymerization (ATRP) method. The number average molecular weights (Mn) of the PEO and PMPCS blocks are 5300 and 2100 g/mol, respectively. Combining the techniques of differential scanning calorimetry (DSC), optical microscopy (OM), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS), we have found that the PMPCS blocks, which are tablet-like, can significantly affect the crystallization and melting of the diblock copolymer. The sample studied can form the crystals with a monoclinic crystal structure identical to that of the homo-PEO. The melting temperature (Tm) of the diblock copolymer increases monotonically with crystallization temperature (Tc), which is remarkably similar to the behavior of long period. On the basis of Gibbs-Thomson relationship, the equilibrium Tm of the diblock copolymer is estimated to be 65.4 °C. In a wide undercooling (ΔT) range (14 °C<ΔT<30 °C), the isothermal crystallization leads to square-shaped crystals. The PEO-b-PMPCS crystallization exhibits a regime I→II transition at ΔT of 19 °C. The PEO blocks are non-integral folded (NIF) in the crystals, and the PMPCS blocks rejected to lamellar fold surfaces prevent the NIF PEO crystals from transforming to integral folded (IF) ones. Furthermore, the PMPCS tablets may adjust their neighboring positions up or down with respect to the lamellar surface normal, forming more than one PMPCS layer to accompany the increase in the PEO fold length with increasing Tc.  相似文献   

8.
Glassy polymer nanofibers with spatially confined poly(ethylene oxide) (PEO) were fabricated by coaxial electrospinning of PEO with polyacrylonitrile (PAN) or polystyrene. The effect of melt‐annealing on the crystallization behavior of the confined PEOs was studied using differential scanning calorimetry. It is found that the crystallization behavior of the confined PEOs varies with annealing temperature (Ta), annealing time (ta), and molecular weight of PEO. Notably, it is observed that the crystallization temperature (Tc) and melting temperature (Tm) of PEO increase with prolongation of ta, for PEO600K/PAN and PEO2K/PAN coaxial electrospun fibers. This phenomenon can be interpreted by the annealing‐induced demixing at the core‐sheath interface. After the coaxial electrospinning, the core and sheath of the PEO/PAN coaxial fibers are partially compatible due to the miscible solvents used for the core and sheath polymers. Upon annealing, demixing occurs at the core‐sheath interface, leading to improved crystallizability of PEO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45760.  相似文献   

9.
The crystallization behavior of poly(ε-caprolactone) (PCL) blocks starting from a solid lamellar morphology formed in advance by the crystallization of polyethylene (PE) blocks (PE lamellar morphology) in a PCL-b-PE diblock copolymer was investigated by differential scanning calorimetry (DSC), small-angle X-ray scattering with synchrotron radiation (SR-SAXS), and polarized optical microscope (POM). The crystallization behavior was quantitatively compared with that of a PCL-block-polybutadiene copolymer, where the crystallization of PCL blocks started from a rubbery lamellar microdomain. DSC and SR-SAXS results revealed that the crystallization rate of PCL blocks in PCL-b-PE increased drastically with decreasing crystallization temperature Tc and the Avrami exponent depended significantly on Tc. SR-SAXS curves during the crystallization of PCL blocks at high Tc showed a bimodal scattering character, that is, the peak position moved discontinuously with crystallization time. At low Tc, on the other hand, no shift of the SAXS peak position was observed. The macroscopic change in morphology was detected only at high Tc by POM observations. These experimental results for the crystallization behavior of PCL blocks in PCL-b-PE all support our previous conclusions obtained by static measurements; the crystallization mechanism at low Tc is completely different from that at high Tc, that is, the PCL blocks crystallize within the PE lamellar morphology at low Tc while the crystallization of PCL blocks at high Tc yields a morphological transition from the PE lamellar morphology into a new solid morphology.  相似文献   

10.
Nonisothermal crystallization kinetics of the blends of three ethylene–butene copolymers with LDPE was studied using differential scanning calorimetry (DSC) and kinetic parameters such as the Avrami exponent and the kinetic crystallization rate (Zc) were determined. It was found that the pure components and the blends have similar Avrami exponents, indicating the same crystallization mechanism. However, the crystallization rate of the blends was greatly influenced by LDPE. The Zc of all the blends first increases with increasing LDPE content in the blends and reaches its maximum, then descends as the LDPE content further increases. The crystallization rate also depends on the short‐chain branching distribution (SCBD) of the ethylene–butene copolymers. The Zc of the pure component with a broad SCBD is smaller, but its blends have a larger crystallization rate due to losing highly branched fractions after blending with LDPE. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 123–129, 2001  相似文献   

11.
We have investigated the crystallized morphology formed at each temperature Tc (20 °C ≤ Tc ≤ 45 °C) in double crystalline poly(?-caprolactone)-block-polyethylene (PCL-b-PE) copolymers as a function of composition (or volume fraction of PE blocks ?PE) by employing small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) techniques. When PCL-b-PE with ?PE ≤ 0.58 was quenched from a microphase-separated melt into Tc, the crystallization of PE blocks occurred first to yield an alternating structure consisting of thin PE crystals and amorphous PE + PCL layers (PE lamellar morphology) followed by the crystallization of PCL blocks, where we can expect a competition between the stability of the PE lamellar morphology (depending on ?PE) and PCL crystallization (on Tc). Two different morphologies were formed in the system judging from a long period. That is, the PCL block crystallized within the existing PE lamellar morphology at lower Tc (<30 °C) to yield a double crystallized alternating structure while it crystallized by deforming or partially destroying the PE lamellar morphology at higher Tc (>35 °C) to result in a significant increase of the long period. However, the temperature at which the morphology changed was almost independent of ?PE. For PCL-b-PE with ?PE ≥ 0.73, on the other hand, the morphology after the crystallization of PE blocks was preserved at every Tc investigated.  相似文献   

12.
R.T. Tol 《Polymer》2005,46(9):2955-2965
Crystallization kinetics and crystallinity development of PA6 droplets having sizes from 0.1 to 20 μm dispersed in immiscible uncompatibilized PS/PA6 and reactively compatibilized (PS/Styrene-maleic anhydride copolymer=SMA2)/PA6 blends are reported. These blend systems show fractionated crystallization, leading to several separate crystallization events at different lowered temperatures. Isothermal DSC experiments show that micrometer-sized PA6 droplets crystallizing in an intermediate temperature range (Tc∼175 °C) below the bulk crystallization show a different dependency on cooling rate compared to bulk crystallization, and an athermal crystallization mechanism is suggested for PA6 in this crystallization temperature region. The crystallinity in these blends decreases with PA6 droplet size. Random nucleation, characteristic for a homogeneous nucleation process, is found for sub-micrometer sized PA6 droplets crystallizing between Tc 85 and 110 °C using isothermal DSC experiments. However, crystallization in the PA6 droplets is most likely initiated at the PA6-PS interface due to vitrification of the PS matrix during crystallization. Very imperfect PA6 crystals are formed in this low temperature crystallization region, leading to a strongly reduced crystallinity. These crystals show strong reorganization effects upon heating.  相似文献   

13.
A study on the isothermal crystallization of water in aqueous solutions of poly(vinyl methyl ether) (PVME) was carried out by the differential scanning calorimetry (DSC). The influence of PVME concentration (49.5, 44.5 and 39.5 v%) and the crystallization temperature (Tc) on crystallization rate G, crystallization enthalpy (ΔHc) and melting enthalpy (ΔHm) was investigated. Avrami equation cannot be used to describe the crystallization process of water in aqueous PVME solution. Within the measured temperature range, the crystallization rate G increases with the crystallization temperature Tc and with the decreasing PVME content. The crystallization enthalpy ΔHc linearly increases with the degree of supercooling. The influence of Tc on the ΔHc becomes more marked with increasing PVME concentration. For 49.5 and 44.5 v% PVME solutions, the amount of water arrested in solution during the isothermal crystallization and the final concentration of PVME-rich phase increase linearly with the Tc, whereas for 39.5 v% PVME solution, these two values almost do not change with Tc. The amount of frozen water in the subsequent cold crystallization is approximately proportional to the initial Tc. The approximately constant ΔHm for a given concentration at the different initial isothermal crystallization temperatures suggests that the total amount of ice from the first isothermal crystallization and the second cold crystallization is same. The quantitative relation of the amount of frozen water in the cold crystallization and the initial Tc demonstrates that PVME/water complexes are thermodynamically unstable.  相似文献   

14.
Copolyester was synthesized and characterized as having 94.4 mol% ethylene succinate units and 5.6 mol% trimethylene succinate units in a random sequence as revealed by NMR. Differential scanning calorimeter (DSC) was used to investigate the isothermal crystallization kinetics of this copolyester in the temperature range (Tc) from 30 to 80 °C. The melting behavior after isothermal crystallization was studied by using DSC and temperature modulated DSC (TMDSC) by varying the Tc, the heating rate and the crystallization time. DSC and TMDSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are primarily due to the melting of lamellar crystals with different stabilities. A small exothermic curve between the main melting peaks gives a direct evidence of recrystallization. As the Tc increases, the contribution of recrystallization gradually decreases and finally disappears. The Hoffman-Weeks linear plot gave an equilibrium melting temperature of 108.3 °C. The kinetic analysis of the spherulitic growth rates indicated that a regime II → III transition occurred at ∼65 °C.  相似文献   

15.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

16.
We show that the phase behavior of the strongly segregated blend consisting of a crystalline-amorphous diblock copolymer (C-b-A) and an amorphous homopolymer (h-A), which depends on the degree of wetting of A blocks by h-A, can be probed by the crystallization kinetics of the C block. A lamellae-forming poly(ethylene oxide)-block-polybutadiene (PEO-b-PB) was blended with PB homopolymers (h-PB) of different molecular weights to yield the blends exhibiting ‘wet brush’, ‘partially dry brush’, and ‘dry brush’ phase behavior in the melt state. The crystallization rate of the PEO blocks upon subsequent cooling, as manifested by the freezing (crystallization) temperature (Tf), was highly sensitive to the morphology and spatial connectivity of the microdomains governed by the degree of wetting of PB blocks. As the weight fraction of h-PB reached 0.48, for instance, Tf experienced an abrupt rise as the system entered from the wet-brush to the dry-brush regime, because the crystallization in the PEO cylindrical domains in the former required very large undercooling due to a homogeneous nucleation-controlled mechanism while the process could occur at the normal undercooling in the latter since PEO domains retained lamellar identity with extended spatial connectivity. Our results demonstrate that as long as the C block is present as the minor constituent the melt phase behavior of C-b-A/h-A blends can also be probed using a simple cooling experiment operated under differential scanning calorimetry (DSC).  相似文献   

17.
A poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymer with a number average molecular weight of PEO blocks, =8.8 kg/mol, and a number average molecular weight of PS blocks, =24.5 kg/mol, (volume fraction of the PEO blocks, fPEO, was 0.26) exhibited a hexagonal cylinder (HC) phase structure. Small angle X-ray scattering results showed that the PEO cylinder diameter was 13.3 nm, and the hexagonal lattice was a=25.1 nm. The cylinder diameter of this HC phase structure was virtually the same as that in the blend system constructed by a PEO-b-PS diblock copolymer (=8.7 kg/mol and =9.2 kg/mol) and a PS homo-polymer (=4.6 kg/mol) in which the fPEO was 0.32. The cylinder diameter in this blend sample was 13.7 nm and the hexagonal lattice was a=23.1 nm. Comparing crystal orientation and crystallization behaviors of this PEO-b-PS copolymer with the blend, it was found that the crystal orientation change with respect to crystallization temperature was almost identical. This is attributed to the fact that in both cases the PEO block tethering densities and confinement sizes are very similar. This indicates that when the of PS homo-polymer is lower than the PS blocks, the PS homo-polymer is located inside of the PS matrix rather than at the interface between the PEO and PS in the HC phase structure. On the other hand, a substantial difference of crystallization behaviors was observed between these two samples. The PEO-b-PS copolymer exhibited much more retarded crystallization kinetics than that of the blend. Based on the small angle X-ray scattering results, it was found that in the blend sample, the HC phase structure was not as regularly ordered as that in the PEO-b-PS copolymer, and thus, the HC phase structure contained more defects in the blend. This led to a suggestion that the primary nucleation process in the confined crystallization is a defect-controlled process. The mean crystallite sizes were estimated by the Scherer equation, and the PEO crystal sizes are on the scale of the confined size.  相似文献   

18.
Xiu-Li Wang  Dan-Qi Chen  Si-Chong Chen 《Polymer》2004,45(23):7961-7968
The thermal transition, crystallization and spherulitic morphology of starch-g-poly(1,4-dioxan-2-one) copolymers were studied by means of differential scanning calorimetry (DSC) and polarized optical micrographs (PM). It is found that the graft structures of copolymers have obvious effects on the thermal and crystallization behaviors. Because there were more defect sites in the crystalline phase originating from the short grafted chains of poly(1,4-dioxan-2-one) (PPDO), the crystal structure of the copolymers was much less perfect than that of PPDO. PM revealed that the spherulitic morphology of the graft copolymers depended on graft structures and crystallization temperatures. From the single polarized micrograph of the graft copolymers it was observed clearly that the starch segments acted as nucleation sites. The Avrami equation was used to analyze the overall isothermal crystallization of the graft copolymers. Avrami exponents were almost constant at crystallization temperatures Tc ranging from 45 to 60 °C. Both the PM observation and the DSC investigation (crystallization rate constant, K values) indicated that the graft copolymers crystallize faster than pure PPDO, especially at higher crystallization temperatures.  相似文献   

19.
Blends of statistical copolymers containing ethylene/hexene (PEH) and ethylene/butene (PEB) exhibited the behavior of upper critical solution temperature (UCST). The interplay between the early and intermediate stage liquid-liquid phase separation (LLPS) and crystallization of the PEH/PEB 50/50 blend was studied by time-resolved simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. Samples were treated by two different quench procedures: in single quench, the sample was directly quenched from 160 °C to isothermal crystallization temperature of 114 °C; while in double quench, the sample was firstly quenched to 130 °C for 20 min annealing, where LLPS occurred, and then to 114 °C. It was found that in the early stage of crystallization, the integrated values of Iq2 and crystallinity, Xc, in the double quench procedure were consistently higher than those in the single quench procedure, which could be attributed to accelerated nucleation induced by enhanced concentration fluctuations and interfacial tension. In the late stage of crystallization, some morphological parameters were found to crossover and then reverse, which could be explained by retardation of lamellar growth due to phase separation formed during the double quench procedure. This phenomenon was also confirmed by DSC measurements in blends of different compositions at varying isothermal crystallization temperatures. The crystal lamellar thickness determined by SAXS showed a good agreement with TEM observation. Results indicated that the early stage LLPS in the PEH/PEB blend prior to crystallization indeed dictated the resulting lamellar structures, including the average size of lamellar stack and the stack distribution. There seemed to be little variation of lamellar thickness and long period between the two quenching procedures (i.e., single quench versus double quench).  相似文献   

20.
Crystallization and morphology of polyethylene glycol with molecular weight Mn = 2000 (PEG2000) capped with cholesterol at one end (CS‐PEG2000) and at both ends (CS‐PEG2000‐CS) were investigated. It is found that the bulky cholesteryl end group can retard crystallization rate and decrease crystallinity of PEG, especially for CS‐PEG2000‐CS. Isothermal crystallization kinetics shows that the Avrami exponent of CS‐PEG2000 decreases as crystallization temperature (Tc). The Avrami exponent of CS‐PEG2000‐CS increases slightly with Tc, but it is lower than that of CS‐PEG2000. Compared to the perfect spherulite morphology of PEG2000, CS‐PEG2000 exhibits irregular and leaf‐like spherulite morphology, while only needle‐like crystals are observed in CS‐PEG2000‐CS. The linear growth rate of CS‐PEG2000 shows a stronger dependence on Tc than PEG2000. The cholesterol end group alters not only the free energy of the folding surface, but also the temperature range of crystallization regime. The small angle X‐ray scattering (SAXS) results show that lamellar structures are formed in all these three samples. By comparing the long periods obtained from SAXS with the theoretically calculated values, we find that the PEG chains are extended in PEG2000 and CS‐PEG2000, but they are once‐folded in CS‐PEG2000‐CS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2464–2471, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号