首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, Ultra-high-molecular-weight polyethylene (UHMWPE) in 0.5 wt % concentration—0.5, 1, and 2 wt % nanosized and micron-sized TiO2 composites were produced via gelation/crystallization method in decalin + antioxidant solution at 150 °C for 45 min by using magnetic stirrer. The gel composites were cooled in an aluminum tray embedded in iced water under ambient conditions and dried in an oven at 130 °C for 90 min to remove any residual trace of decalin and to strengthen the UHWMPE matrix. Scanning electron microscopy–EDS images indicate that TiO2 particles were integrated well with the polymer matrix. differential scanning calorimetry studies revealed that the crystallinity of pure UHMWPE was calculated as 56% and an increase of 13.32% for micron sized and 19.25% for nano sized TiO2. Crystalline and amorphous phases of UHMWPE–TiO2 composites confirmed by Raman are in good agreement with the literature. The elastic modulus of test materials ranged from 610 to 791 MPa for micron sized and raised from 675 to 1085 for nano sized reinforcing agents. Ultimate tensile stress increased about 35% for micron sized and 60% for nano sized weight 1% TiO2 reinforced composites. Biomineralization tests (performed in stimulated body fluid, at 37 °C and 6.5 pH during 1 month) have shown that produced composites are compatible as acetabular liner replacement for hipjoints due to no accumulation (Ca, P, Na, etc.) on UHMWPE–TiO2 composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47402.  相似文献   

2.
The influence of network density on the strain hardening behaviour of amorphous polymers is studied. The network density of polystyrene is altered by blending with poly(2,6-dimethyl-1,4-phenylene-oxide) and by cross-linking during polymerisation. The network density is derived from the rubber-plateau modulus determined by dynamic mechanical thermal analysis. Subsequently uniaxial compression tests are performed to obtain the intrinsic deformation behaviour and, in particular, the strain hardening modulus. At room temperature, the strain hardening modulus proves to be proportional to the network density, irrespective of the nature of the network, i.e. physical entanglements or chemical cross-links. With increasing temperature, the strain hardening modulus is observed to decrease. This decrease appears to be related to the influence of thermal mobility of the chains, determined by the distance to the glass-transition temperature (TTg).  相似文献   

3.
Catalytic materials of alumina and lanthana supported nanosized palladium particles (7 wt%) in a water suspension were prepared by Liquid Flame Spray (LFS) method. The particle production rate was 90 g/h, using liquid precursors containing Al(NO3)3 · 9H2O, La(NO3)3 · 6H2O and Pd(NH3)4NO3 in water solution. In the LFS method, a turbulent, high-temperature (Tmax ∼ 2,700 °C) H2–O2 flame is used. The liquid precursor is atomized into micron sized droplets by high velocity H2 flow and introduced into the flame where the droplets will evaporate. The evaporated compounds decompose and the reaction product re-condenses into particulate material. Here, the nanosized particles are formed by gas-to-particle conversion and the micron sized particles via liquid-to-solid route. In this study, the produced particulate material was collected by thermophoresis along with condensing water into a suspension (nanoparticles in water) in a one-step process. Thus, the whole suspension was produced from the end products of the flame. According to TEM-EDS analysis, the particulate material contained micron sized porous aluminum oxide or lanthanum oxide carrier particles, coated by nanosized palladium particles (∼2–10 nm). The surfactant (Rhodasurf-La 42) was injected into the suspension just after collection to reduce agglomeration. Catalytic performance of the produced Pd–lanthana containing suspension was tested in laboratory with synthetic gases, in order to use it as a possible raw material for three-way catalyst (TWC). The suspension was used as Pd raw material in TWC washcoat and dispersed onto a metallic honeycomb.  相似文献   

4.
Uniaxial and plane strain compression experiments are conducted on amorphous poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG) over a wide range of temperatures (25-110 °C) and strain rates (.005-1.0 s−1). The stress-strain behavior of each material is presented and the results for the two materials are found to be remarkably similar over the investigated range of rates, temperatures, and strain levels. Below the glass transition temperature (θg=80 °C), the materials exhibit a distinct yield stress, followed by strain softening then moderate strain hardening at moderate strain levels and dramatic strain hardening at large strains. Above the glass transition temperature, the stress-strain curves exhibit the classic trends of a rubbery material during loading, albeit with a strong temperature and time dependence. Instead of a distinct yield stress, the curve transitions gradually, or rolls over, to flow. As in the sub-θg range, this is followed by moderate strain hardening and stiffening, and subsequent dramatic hardening. The exhibition of dramatic hardening in PETG, a copolymer of PET which does not undergo strain-induced crystallization, indicates that crystallization may not be the source of the dramatic hardening and stiffening in PET and, instead molecular orientation is the primary hardening and stiffening mechanism in both PET and PETG. Indeed, it is only in cases of deformation which result in highly uniaxial network orientation that the stress-strain behavior of PET differs significantly from that of PETG, suggesting the influence of a meso-ordered structure or crystallization in these instances. During unloading, PETG exhibits extensive elastic recovery, whereas PET exhibits relatively little recovery, suggesting that crystallization occurs (or continues to develop) after active loading ceases and unloading has commenced, locking in much of the deformation in PET.  相似文献   

5.
Hilmar Koerner  Ashley Tan  Peter Mirau 《Polymer》2006,47(10):3426-3435
For organically modified montmorillonite (OMM)-epoxy nanocomposites, maximal montmorillonite dispersion is found to depend synergistically on the mechanical processing history of the resin mixture and the chemistry at the OMM surface. Specifically, Cloisite 30A (quaternary ammonium OMM) and I30.E (primary ammonium OMM), each containing surfactants with different catalytic effects on the curing chemistry of Epon 862, are compared. Irrespective of the OMM, conventional solvent-free processing methodologies, including sonication, result in an inhomogeneous distribution of OMM on the micron scale. Even though the primary ammonium alkyls within I30.E enhance intragallery reactivity, this only results in extensive swelling of tactoids (interlayer distance ∼10-20 nm), and thus retention of layer-layer correlations, leading to ‘hybrid’ micron scale reinforcing particles, not nanoscale dispersion of individual layers. In contrast, sub-ambient temperature (cryo) compounding had substantial impact on the ability to reduce tactoid and agglomerate size and increase homogeneity of dispersion for Cloisite 30A. The reactivity near Cloisite 30A is similar to that in the bulk and thus localized gelation around the layer-stacks does not retard particulate refinement. In all cases, alteration of the global epoxy network structure was ruled out by FTIR and NMR measurements. For nanocomposites with similar OMM content, however, the final thermal-mechanical properties does not coherently relate to one characteristic of the morphology. The coefficient of thermal expansion (T>Tg) and hardness (T<Tg) depend only weakly on morphology, where as the glass transition temperature depends strongly on the extent of OMM dispersion and interfacial chemistry. In general, the inter-relationships between mechanical processing, OMM surface chemistry and the desired property enhancements are not linear and thus must be considered in light of a final application to evaluate the optimal ‘nanocomposite’ fabrication methodology to achieve maximal benefit.  相似文献   

6.
Li2O–Al2O3–SiO2 glass with CaO, MgO and TiO2 additive were investigated. With more CaO + MgO addition, the crystallization temperature (Tp) and the value of Avrami constant (n) decreased, the activation energy (E) increased. The mechanism of crystallization of the glass ceramics changed from bulk crystallization to surface crystallization. With more TiO2 addition, the crystallization temperature decreased, E and n had a little change. The crystallization of the glass ceramics changed from surface crystallization to two-dimensional crystallization. Plate-like, high mechanical properties spodumene-diopside glass ceramics were obtained. The mechanical properties related with crystallization and morphology of glass ceramics.  相似文献   

7.
Deformations in isotropic, strain-free polymer glasses are usually completely recoverable (at the test temperature or after warming to Tg), in sharp contrast with the behavior of low molecular weight glasses and crystals. The apparent ‘plastic strain’ which remains at the end of a creep or stress relaxation experiment does not recover at the test temperature, but only after the sample is heated. It is proposed that the long time scales needed for entanglement reorganization in the glass are responsible for this delayed recovery. A phenomenological network model for thermally activated strain recovery in polymer glasses is analyzed. A superposition relation between the stress and the strain history using a KWW (stretched exponential) memory kernel is employed. The recovery of plastic (i.e. residual) strain in non-crosslinked amorphous thermoplastics is a two-step process that may be interpreted in terms of the network model. In particular, recovery at sub-Tg temperatures is associated with entanglement slippage, while recovery near-Tg is believed to involve reorganization at or near chain ends.  相似文献   

8.
A phase transformation of micron‐sized TiO2 powder from anatase to rutile was attempted by heat‐treatment in order to generate a new mixed crystal TiO2 with high associated photocatalytic activity. Heat‐treated micron‐sized TiO2 powders at different transition stages were characterized by X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT‐IR) and transmission electron microscopy (TEM) methods. The tests of photocatalytic activity of the heat‐treated micron‐sized TiO2 powders were conducted by the photocatalytic degradation of Rhodamine B and Acid Red B under visible light irradiation. The results indicate that mixed crystal TiO2 photocatalyst heat‐treated at 400 °C for 60 min shows the highest photocatalytic activity. It can effectively decompose the Rhodamine B and Acid Red B in aqueous solution after 6 h visible light irradiation. A remarkable improvement in photocatalytic activity of TiO2 is caused by the formation of combined rutile–anatase phases and separation of photogenerated electron–hole pairs. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
Molecular dynamics simulations of realistic, united atom models of polyethylene undergoing uniaxial extension are described. Systems composed of chains ranging from 25 to 400 carbons have been studied, under a variety of processing histories, including isothermal deformation at constant applied stress below the melt temperature Tm, isothermal deformation below Tm followed by annealing, isothermal deformation above Tm followed by crystallization at a quench temperature below Tm, and non-isothermal crystallization during simultaneous deformation and cooling through Tm. Extension and orientation of large segments of flexible chains by uniaxial deformation accelerates the primary nucleation rate to a time scale accessible by molecular dynamics simulation. Entanglements operative during active deformation promote extension and orientation without nucleation of a crystal phase, while relaxation of stress at constant strain is sufficient to allow slippage of chains past pinning points and rapid nucleation and growth of crystallites as neighboring oriented chains come into registry. Isothermal crystallization of pre-oriented systems shows an apparent increase in nucleation density at lower temperatures; the resulting ordered regions are smaller and more closely aligned in the direction of orientation. During non-isothermal deformation, where stretching and cooling occur simultaneously, a first order transition is observed, with discontinuities in the volume and global order parameter, when the system crystallizes.  相似文献   

10.
J. Jancar  K. Fiore 《Polymer》2011,52(25):5851-5857
The spherulite growth rate, GII, was measured for three monodisperse linear polyethylenes filled with up to 4 vol. % of SiO2 nanoparticles in the crystallization regime II of small undercooling, ΔT. The fumed SiO2 used did not exhibit any measurable nucleation activity. The GII scaled with the number average molecular weight, Mn, as Mnν with the scaling exponent, ν, equal to (2.2 ± 0.1). This corresponds to the reptation controlled surface self-diffusion of loop-train adsorbed chains with the contour length fluctuation (CLF) and the chain constraint release (CR) contributions. In order to verify the hypothesis of the chain reptation as the molecular mechanism responsible for the chain transport, logGII was plotted against the logarithm of the number of effective entanglements per chain, logNeff. The Neff was the sum of the number of “true” entanglements in the neat resin of a given Mn and the number of apparent “temporary” entanglements due to adsorption/desorption of segments of PE chains onto SiO2 nanoparticles with their inter-particle distance equal or shorter than the average entanglement length. Adding 2 vol % and 4 vol. % SiO2, respectively, resulted in an increase of the Neff by 40% and 80% of apparent “temporary” entanglements, respectively. When plotted against logNeff, all the experimental logGII data for a given undercooling, ΔT, collapsed to a single line. The slope of the logGII vs. logNeff dependence was independent of ΔT and varied from −2.13 to −2.24, similarly to the slope of the logGII vs. logMn dependence. This supported the conclusion that the effects of increasing the Mn and/or adding the non-nucleating nanometer sized SiO2 on the spherulite growth rate were additive in nature and their effect can be superimposed. The retarded reptation of the chains to the growing crystal front was identified as the primary molecular mechanism of chain transport controlling the reduction of the spherulite growth rate in the model PE/SiO2 nanocomposites investigated.  相似文献   

11.
Zero shear viscosity and molecular weight between entanglements (M e ) are determined from dynamic oscillatory shear experiments. Lower M e value means higher number of entanglements in the system and is associated with increasing strain hardening stiffness. With the understanding that strain hardening is related to environmental stress cracking resistance (ESCR) of high density polyethylene (HDPE), M e is then related to the ESCR of several resins in this study. The inversely proportional relationship between M e and ESCR indicates that low network mobility due to an increasing number of chain entanglements increases the ESCR of HDPE.  相似文献   

12.
The stress–strain properties of TiO2-filled poly(vinyl acetate) have been studied at filler percentages of 0, 10, 20, 30, and 40% TiO2 over a strain-rate range of 100–5000%/ min at 24°C. Tensile strength, Young's modulus, and offset yield strengths all were found to increase with higher strain rates and higher TiO2 contents. Ultimate elongations decreased with greater TiO2 content and higher strain rates. Shift factors for volume fraction of filler were estimated for tensile properties as function of test rate. Stress relaxation studies have shown a reduction in relaxation times with increasing TiO2 content. Calculations of the out-of-phase Young's modulus were made as a function of filler content employing a box-type of distribution of relaxation times. A possible explanation for the stress–strain behavior observed is that introduction of TiO2 changes the internal viscosity of the system, similar to the effect of temperature. This would also mean that the ultimate properties would be dependent on filler content and strain rate because viscous resistance to chain deformation would be altered. The effect of filler on stress relaxation could be thought of being due to an increase in short-range chain motion.  相似文献   

13.
The effects of compositional variation, crystallization behavior, crystalline phases and microstructure formed in the SiO23Al2O33CaO (SAC) glass system using various amounts of TiO2 as nucleating agent were investigated by Differential Thermal Analysis (DTA), X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR) techniques. The crystallization kinetics and mechanical properties of SAC glass ceramics were studied using crystallization peak temperature (Tp) of three different glasses as obtained from DTA, the activation energy (E) and Avrami exponent (n) were also determined. The crystallization peak temperature (Tp) and activation energy (E) were found to increase with the increase in TiO2 content. The major crystalline phases were anorthite and wollastonite along with gehlenite and titanite as the minor crystalline phases present in the glass ceramic system. The studies showed that the three dimensional crystalline structure and the microhardness increased with the increase of TiO2 content in the glass ceramics system.  相似文献   

14.
T Cosgrove  R.F Warren 《Polymer》1977,18(3):255-258
Nuclear magnetic relaxation times (T1 and T2) and diffusion coefficients (D) of polystyrene solutions in d8 toluene have been measured as a function of molecular weight. The polymer T1, T2 and D values decrease monotonically with increasing molecular weight. T1 and D reach limiting values at high molecular weights. The results are interpreted in terms of chain entanglements and the time scale of the experimental method.  相似文献   

15.
This work investigates the relationships between the components of powders, namely, the powder surface morphology, the flow characteristics and the compressibility of low-energy (microcomposite) and high-energy (nanocomposite) ball milled powders of Al 6061 alloy reinforced with TiO2 particles. The morphology of the above powder as the function of reinforcement and the milling time was studied by using the scanning electron microscope (SEM). The changes in powder characteristics such as the apparent density, tap density, true density and flow rate were examined by the percentage of reinforcement and milling time. The cohesive nature of the powder was also investigated in terms of Hausner ratio and Kawakita plot. Further, the particle/agglomerate size of low-energy and high-energy ball milled powders was explained by the laser particle size analyzer. X-ray peak broadening analysis was used to determine structural properties of mechanically alloyed powders. The compressibility behavior was examined by the compaction equation proposed by Panelli and Ambrosio Filho to investigate the deformation capacity of the powder. The compressibility behavior, namely, the densification parameter (A) of the microcomposite powder (irregular morphology) was decreased significantly with increasing TiO2 content due to the disintegration of TiO2 particles and the cluster formation followed by its agglomeration. The compressibility behavior, namely, the densification parameter (A) of the nanocomposite powder (equiaxed and almost spherical) was decreased slowly with increasing TiO2 content due to work hardening on the matrix powder. With increased milling time, the compressibility behavior of AA 6061-10 wt.% TiO2 composite powders increased up to 30 h of milling due to embedding of TiO2 particles with matrix and changes in powder morphology and finally decreased after 40 h due to work hardening effect.  相似文献   

16.
R. Folland  A. Charlesby 《Polymer》1979,20(2):211-214
Pulsed n.m.r. spin-spin relaxation time measurements are reported for a commercial whole polymer sample of cis-polyisoprene which has been crosslinked to varying extents by γ-irradiation. The spin-spin relaxation decays at 150°C consist of two components, T2S and T2L, which are attributed to protons in a network structure (entangled or crosslinked) and in non-network molecules respectively. Comparison of the n.m.r. data with solubility measurements, which only detect the presence of a crosslinked network, provides a value for the average molecular weight for entanglements which is in the region of 40 000 to 50 000.  相似文献   

17.
High-density polyethylene (HDPE) was chemically crosslinked with various amounts of di-tert butyl cumyl peroxide (BCUP). Crosslink density determined by rubber elasticity theory using hot set test showed an increase with increasing BCUP. Glass transition temperature (Tg), thermal stability, crystallization, melting behavior and tensile properties were studied. The results showed a new finding about decrease in Tg as a consequence of the ‘chemical crosslinking’ of HDPE. This was explained by observed reduction in crystallinity and expected increase in free volume as a result of restriction in chain packing. However, chemical crosslinking had no significant effect on the thermal stability. The stress at break, Young's modulus yield strength and elongation at break generally decreased with increase in BCUP. By increasing the temperature for slightly crosslinked HDPE, the elongation at break was increased but by increasing the crosslinking level an opposite effect was observed. Crosslinked HDPE showed an decrease in creep strain and an increase in creep modulus with increasing BCUP.  相似文献   

18.
This study examined the characterization of nanoporous structured carbon/TiO2 composites and its application to dye-sensitized solar cells. TEM of nanoporous structured carbon revealed nanopore sizes of 2.0–3.0 nm with a regular hexagonal form. When nanoporous structured carbon was mixed to TiO2 particles and then was applied to DSSC, the energy conversion efficiency was enhanced considerably compared with that using only nanometer sized pure TiO2: the energy conversion efficiency of the DSSC prepared from nanoporous carbon/TiO2 composites was approximately 3.38%, compared to 2.49% using pure TiO2. We confirmed from FT-IR spectroscopy that the dye molecules were attached perfectly to the surface and more was absorbed on the nanoporous structured carbon/TiO2 composite than on the pure TiO2 particles. In impedance measurements, R3 which means the Nernstian diffusion within the electrolytes was largely decreased in a cell assembled by nanoporous carbon/TiO2 composites than that of TiO2.  相似文献   

19.
Cross-linked samples of natural rubber (NR) and synthetic cis-1,4-polyisoprene (IR) were instantaneously expanded to a predetermined strain ratio, αs, using a newly-designed high-speed tensile tester. Crystallization behavior after the cessation of deformation was investigated. The high-cycle wide-angle X-ray diffraction (WAXD) measurements could successfully reveal the drastic progress of crystallization within the first a few hundred milliseconds. Quantitative analysis of diffraction intensity clarified coexistence of fast and slow crystallization processes; time constants τf and τs, and amplitude If and Is, respectively, were estimated for these processes. The values of τf were in the range of 50–200 ms, while τs ranged between 2.5 and 4.5 s. Almost linear dependence of If and Is on αs was clarified. The crystallite size in the directions both parallel and perpendicular to the stretching direction decreased with the increase in time-averaged nominal stress. The crystal lattice deformed almost linearly with the average nominal stress. For the fast process, correlation between crystallization and stress relaxation was not recognized, while linear relationship between them was found for the slow process. In every case, strain-induced crystallization was found to be the major origin of stress relaxation. Based on the results, effects of strain on crystallization of polymer melt were discussed.  相似文献   

20.
A series of monomer casting (MC) nylon‐6/SiO2 composites were prepared via in situ polymerization. It was found that the tensile strength, storage modulus, and notched charpy impact strength of the composites were improved and reached maximum at 3–5 wt% loading of SiO2. The α relaxation peak corresponding to the glass transition temperature (Tg) shifted to high temperature with increasing SiO2 content. Addition of SiO2 led to an increase of the melting and crystallization temperatures, and crystallinity. It also reduced the induction time of crystallization, advance the crystallization process of MC nylon‐6, and improve the crystal growth rate. The self‐nucleation crystallization analysis indicated that SiO2 particles played the role of facilitating the crystallization of the matrix mainly via accelerating the generation of crystal nucleus. By addition of SiO2 particles, the fracture surface of MC nylon‐6 changed to distant striations with many yield folds accompanied by a large number of stress whitening, displaying much obvious character of tough fracture. SiO2 particles can be pulled‐out under stress by being covered with MC nylon‐6 resin due to strong interfacial interaction and presented a skin–core structure. © 2012 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号