共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report the successful production of nanofibers from main-chain polybenzoxazines (MCPBz) via electrospinning without using any other carrier polymer matrix. Two different types of MCPBz (PBA-ad6 and PBA-ad12) were synthesized by using two types of difunctional amine (1,6-diaminohexane and 1,12-diaminododecane), bisphenol-A, and paraformaldehyde as starting materials through a Mannich reaction. 1H NMR and FTIR spectroscopy studies have confirmed the chemical structures of the two MCPBz. We were able to obtain highly concentrated homogeneous solutions of the two MCPBz in chloroform/N,N-dimethylformamide (DMF) (4:1, v/v) solvent system. The electrospinning conditions were optimized in order to produce bead-free, uniform and continuous nanofibers from these two MCPBz by varying the concentrations of PBA-ad6 (30–45%, w/v) and PBA-ad12 (15–20%, w/v) in chloroform/DMF (4:1, v/v). The bead-free fiber morphology was evidenced under SEM imaging when PBA-ad6 and PBA-ad12 were electrospun at solution concentration of 40% and 18% (w/v), respectively. The nanofibrous mats of MCPBz were obtained as free-standing material, yet, PBA-ad12 mat was more flexible than and PBA-ad6 mat. Furthermore, the curing studies of these MCPBz nanofibrous mats were performed to obtain cross-linked materials. 相似文献
2.
《Ceramics International》2020,46(17):26441-26453
As important functional materials for absorbing and attenuating incident electromagnetic waves, microwave absorption (MA) materials have found a wide range of applications in civil and military fields. In addition to the study of the compositions, the structural design of the MA materials is also a research hotspot in the field. Among the various structures, the one-dimensional (1D) structure has drawn wide attention because of the unique shape anisotropy and spatial confinement effect. Electrospinning technology has become one of the main ways to prepare continuous 1D micro-nano fibers due to the advantages of many types of spinnable materials, low spinning cost, and high controllability of process parameters. This review involves an introduction and a classification of the research progresses achieved in electrospinning technology concerning MA nanofibers from the perspective of compositions, as well as the list of their minimum reflection loss (RLmin) and effective absorption bandwidth (EAB). 相似文献
3.
J.S. Jeong S.Y. Jeon T.Y. Lee J.H. Park J.H. Shin P.S. Alegaonkar A.S. Berdinsky J.B. Yoo 《Diamond and Related Materials》2006,15(11-12):1839
MWNT/nylon 6, 6 composite nanofibers were fabricated using an electrospinning method, and the electrical properties were examined as a function of the filler concentration. Initially, the pristine, purified MWNTs were treated with a 3:1 mixture of concentrated H2SO4/HNO3 to introduce carboxyl groups onto the MWNT surface. The carboxylated MWNTs were then treated with thionyl chloride and an ethylenediamine solution for amide functionalization. FT-IR spectroscopy was used to examine the functionalization of the MWNTs. Nylon 6, 6 is readily soluble in formic acid. Therefore, the amide functionalized MWNTs were dispersed in formic acid. The solution remained stable and uniform for more than 40 h. –NH2 termination of the MWNTs improved the dispersion stability of the MWNTs in formic acid. The MWNTs-suspended in a solution of nylon 6, 6 in formic acid was electrospun to obtain the nanofibers. The electrical properties of the nanofibers were examined as a function of the filler concentration. The results showed that the I–V properties of the nanofiber sheet improved with increasing filler concentration. 相似文献
4.
Ju Young Park In Hwa Lee Gwi Nam Bea 《Journal of Industrial and Engineering Chemistry》2008,14(6):707-713
In order to fabricate polyvinylacetate (PVAc) fiber by electrospinning, we have been examined electrospun polyvinylacetate (PVAc) under various conditions after dissolving it in ethanol solution. As the concentration of spinning solution increased, the diameter of the electrospun PVAc fiber increased. At the concentration lower than 10 wt.%, beads were formed while over the 25 wt.%, distinct fiber was not observed. At the tip-collector distance (TCD) of 7.5 cm or less, the jet of spinning solution was unstable and the fiber diameter decreased. On the other hand, at the TCD of 10 cm or more, the strength of electric field became too weak and the fiber diameter increased. As the flow rate of spinning solution increased, the fiber diameter increased and at the flow rate of 300 μl/min or more, it increased sharply. For 15 wt.% PVAc, the fiber diameter decreased as the applied voltage increased. At a high-applied voltage, however, charge acceleration caused the spinning solution not to be separated and thus the fiber diameter increased. As a result of dissolving PVAc in ethanol and electrospinning it in the following conditions, a fiber with the diameter of about 700 nm was spun: the concentration of 15 wt.%, the TCD of 10 cm, the spinning solution flow rate of 100 μl/min, and the applied voltage of 15 kV. 相似文献
5.
The electrochemical behavior of electrospun polypyrrole (PPy)/sulfonated-poly(styrene-ethylene-butylenes-styrene) (S-SEBS) composite nanofibers was investigated, compared to PPy/poly(styrene-ethylene-butylenes-styrene) (SEBS) fibers prepared by a casting method. The electrospun PPy/S-SEBS (E-PSS) fibers were about 300 nm in average diameter, while PPy/SEBS composite (C-PS) prepared by a casting method showed the granular macroporous structure. The effect by both electrospinning and sulfonation results in higher electrochemical capacity due to the increase of doping level, high electrical conductivity, low interfacial resistance, and high reversibility by easy intercalation of Li ion. In addition, sulfonated SEBS induces higher elongation force to jet in the processing of electrospinning due to the role of dopant. 相似文献
6.
This paper investigates electrospinning of a natural biopolymer, gelatin, and the mass concentration-mechanical property relationship of the resulting nanofiber membranes. It has been recognized that although gelatin can be easily dissolved in water the gelatin/water solution was unable to electrospin into ultra fine fibers. A different organic solvent, 2,2,2-trifluoroethanol, is proven suitable for gelatin, and the resulting solution with a mass concentration in between 5 and 12.5% can be successfully electrospun into nanofibers of a diameter in a range from 100 to 340 nm. Further lower or higher mass concentration was inapplicable in electrospinning at ambient conditions. We have found in this study that the highest mechanical behavior did not occur to the nanofibrous membrane electrospun from the lowest or the highest mass concentration solution. Instead, the nanofiber mat that had the finest fiber structure and no beads on surface obtained from the 7.5% mass concentration exhibited the largest tensile modulus and ultimate tensile strength, which are respectively 40 and 60% greater than those produced from the remaining mass concentration, i.e. 5, 10, and 12.5%, solutions. 相似文献
7.
In this paper the effects of 13 material and operating parameters on electrospun fiber diameters are determined by varying the parameter values in an electrospinning theoretical model. The complexity of the electrospinning process makes empirical determination of the effects of parameters very difficult. The results show that the five parameters (volumetric charge density, distance from nozzle to collector, initial jet/orifice radius, relaxation time, and viscosity) have the most significant effect on the jet radius. The other parameters (initial polymer concentration, solution density, electric potential, perturbation frequency, and solvent vapor pressure) have moderate effects on the jet radius. Parameters relative humidity, surface tension, and vapor diffusivity have minor effects on the jet radius. Knowing the relative effects of parameters on jet radius should be useful for process control and prediction of electrospun fiber production. 相似文献
8.
Upward needleless electrospinning of multiple nanofibers 总被引:2,自引:0,他引:2
A new approach to electrospinning of polymer nanofibers is proposed. A two-layer system, with the lower layer being a ferromagnetic suspension and the upper layer a polymer solution, is subject to a normal magnetic field provided by a permanent magnet or a coil. As a result, steady vertical spikes of magnetic suspension perturbed the interlayer interface, as well as the free surface of the uppermost polymer layer. When a normal electric field is applied in addition to the system, the perturbations of the free surface become sites of jetting directed upward. Multiple electrified jets undergo strong stretching by the electric field and bending instability, solvent evaporates and solidified nanofibers deposit on the upper counter-electrode, as in an ordinary electrospinning process. However, the production rate is shown to be higher. 相似文献
9.
Kris Behler 《Polymer》2007,48(22):6617-6621
Polyamides with long hydrocarbon chains, e.g. PA11 and PA12, are generally dissolved in phenolic or fluoric solvents that prevent these polymers from being electrospun and used in many applications because of their high boiling point and/or prohibitive cost. We demonstrate that a mixture of formic acid and dichloromethane can lead to the dissolution of various polyamides enabling their subsequent electrospinning. Nanofibers and nanoribbons of 130 nm and greater in average diameter were obtained and characterized using scanning electron microscopy and Raman spectroscopy. 相似文献
10.
Ultrafine polyacrylonitrile (PAN) fibers, as a precursor of carbon nanofibers, with diameters in the range of 220–760 nm were
obtained by electrospinning of PAN solution using N,N-dimethyl formamide (DMF) as solvent. Morphology of the nanofibers for varying concentration and applied voltage was investigated
by field emission scanning electron microscopy (FESEM). The thermal properties and structural changes during the oxidative
stabilization process were primarily investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA),
and Fourier transform infrared (FT-IR) and Raman spectroscopy. The nanofiber diameters increase as the applied voltage is
increased and they also increase with an increase in the concentration of the polymer solution. It was also concluded that
the electrospun fibers displayed a very sharp exothermic peak at 297.34 °C. A transition temperature observed by FT-IR and
Raman was approximately 300 °C, which was closely consistent with the results of DSC and TGA studies. It was also found that
oxidative stabilization in air was accompanied by a change in color of nanofibers webs. 相似文献
11.
Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers 总被引:1,自引:0,他引:1
An electrospinning method was used to fabricate chitin nanofibous matrix for wound dressings. Chitin was depolymerized by gamma irradiation to improve its solubility. The electrospinning of chitin was performed with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a spinning solvent. Morphology of as-spun and deacetylated chitin (chitosan) nanofibers was investigated by scanning electron microscopy. Although as-spun chitin nanofibers had the broad fiber diameter distribution, most of the fiber diameters are less than 100 nm. From the image analysis, they had an average diameter of 110 nm and their diameters ranged from 40 to 640 nm. For deacetylation, as-spun chitin nanofibous matrix was chemically treated with a 40% aqueous NaOH solution at 60 or 100 °C. With the deacetylation for 150 min at 100 °C or for 1day at 60 °C, chitin matrix was transformed into chitosan matrix with degree of deacetylation (DD) ∼85% without dimensional change (shrinkage). This structural transformation from chitin to chitosan was confirmed by FT-IR and WAXD. 相似文献
12.
This paper describes PVB/silica nanofibers which were fabricated by electrospinning. Although electrospinning has developed rapidly over the past few years, electrospinning nanofibers are still at a premature research stage which is a process by which polymer nanofibers can be formed when a droplet of viscoelastic polymer solution is subjected to high voltage electrostatic field. PVB/silica nanofibers were obtained when the PVB/silica precursor ratio was 15% and the average diameters ranged from 100 to 200 nm and increased with increasing solution concentration and electrospinning synthesized at 12 kV of the applied voltage. The morphologies and structures of PVB/silica nanofibers were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), Fourier transform infrared spectrometer (FTIR), energy dispersive spectrometer (EDS). 相似文献
13.
Yingjie Liao Takeshi Fukuda Norihiko Kamata Makoto Tokunaga 《Nanoscale research letters》2014,9(1):267
Electrospinning is a versatile technique, which can be used to generate nanofibers from a rich variety of materials. We investigate the variation of a zinc oxide (ZnO)-polyvinylpyrrolidone (PVP) composite structure in morphology by electrospinning from a series of mixture solutions of ZnO sol–gel and PVP. Calcination conditions for the crystallization of ZnO nanofibers and removal of the PVP component from the ZnO-PVP composite nanofibers were also studied. The progression of the ZnO-PVP composite structure from grains to nanofibers was observed, and ZnO-PVP nanofibers as thin as 29.9 ± 0.8 nm on average were successfully fabricated. The size of the resultant ZnO-PVP composite nanofibers was considerably affected by two parameters: the concentrations of zinc acetate and PVP in the precursor solution. The concentration of zinc acetate particularly influenced the diameter distribution of the ZnO-PVP nanofibers. The ZnO-PVP nanofibers could be subsequently converted into ZnO nanofibers of a pure wurtzite phase via calcination in air at 500°C for 2 h. 相似文献
14.
We examine the influence of tethering chemistry of cationic surfactants on exfoliation of montmorillonite (MMT) clay dispersed in methyl methacrylate (MMA) followed by in-situ polymerization to form poly(methyl methacrylate) (PMMA) nanocomposites, the effect of exfoliation and clay loading on the rheology of polymer/clay dispersions in dimethyl formamide, and the diameters of nanocomposite fibers formed from these dispersions by electrospinning. Incorporation of an additional reactive tethering group of methacryl functionality significantly improves the intercalation and exfoliation of clays in both in-situ polymerized PMMA nanocomposites and the corresponding electrospun fibers. The proper surfactant chemistry also increases the dispersion stability, extensional viscosity, extent of strain hardening and thus the electrospinnablity of the nanocomposite dispersions, especially at low nanocomposite concentrations. The degree of the enhancement in electrospinnability by clays with proper tethering chemistry is at least the same as or greater than that obtained with three times higher loading level of clay particles without proper tethering chemistry in the nanocomposites. These results suggest a new strategy to produce smaller diameter fibers from very dilute polymer solutions, which are otherwise not electrospinnable, by incorporating a small amount of well-exfoliated clays. 相似文献
15.
Yongqian Shen Yupeng Wei Jiqiang Ma Qinglin Li Jian Li Wenjie Shao Pengze Yan Guowei Huang Xueyan Du 《Ceramics International》2019,45(3):3313-3324
The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of the NFs were researched over the frequency range of 2.0–18.0?GHz. Both the impedance matching and EM wave absorption properties of the Ni-C NFs were improved by changing the carbonization temperature. The effect of graphitization degree on reflection loss (RL) and the possible loss mechanisms were directly displayed in the comparative study of each sample. The optimal RL value of ??44.9?dB and an effective frequency bandwidth of 3.0?GHz under a thickness of 3.0?mm can be reached by a sample calcined at 650?°C. These lightweight Ni-C NFs composites can be promising candidates for EM wave absorbers due to the combination of multiple loss mechanisms, nano-size effect and good impedance matching between Ni nanoparticles and CNFs. 相似文献
16.
Barium manganate nanofibers were successfully synthesized for the first time after heat treatment of composite nanofibers of polyvinyl pyrrolidone (PVP), barium acetate and manganese acetate using electrospinning technique. Different PVP concentrations were used and the results show that PVP concentration had played important role in the formation, uniformity, homogeneity and particularly in the reduction of nanofibers diameter. Crystal structure, microstructure, elemental analysis and surface morphology were studied using X-ray diffraction analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. X-ray diffraction results show that at low temperature there is no crystallinity in the fibers sample and at ∼400 °C formations of barium manganate crystalline phase starts and finally at 700 °C all the nanofibers became single phase. The first two high intensity peaks (1 0 1) and (1 1 0) give an average crystallite size of about 20 nm. The scanning electron micrographs show that the morphology of the fibers is smooth and uniform at low temperature and become slightly porous at intermediate temperature and finally at high temperature of 700 °C the fibers become highly porous, shrank and their average diameter reduced from ∼400 nm to about 100 nm. These fibers are made of grains with sizes ranging from 15 to 30 nm. Energy dispersive X-ray spectroscopy and Fourier transform infra-red results are also in good agreement with XRD and SEM results. 相似文献
17.
《Ceramics International》2023,49(7):10714-10721
Orthorhombic Sc2(MoO4)3 nanofibers have been prepared by ethylene glycol assisted electrospinning method. The effects of annealing temperature, precursor concentration, spinning distance and solvent on the preparation of Sc2(MoO4)3 nanofibers were characterized by XRD, SEM, HRTEM, EDX and high-temperature XRD. XRD analysis shows as-prepared nanofibers are amorphous. Orthorhombic Sc2(MoO4)3 nanofibers can be fabricated after annealing at different temperatures in 500–800 °C for 2 h. The crystallinity of Sc2(MoO4)3 nanofibers improves and the nanofiber diameter decreases gradually as the annealing temperature increases. However, the nanofiber structure was destroyed at the annealing temperature above 700 °C. Higher precursor concentration results in a slight increase of diameter and decrease in destroying temperature of Sc2(MoO4)3 nanofibers. Spinning distance also affects the diameter of nanofibers, and the nanofiber diameter decreases as the distance increases. One-dimensional orthorhombic Sc2(MoO4)3 nanofibers exhibit anisotropic negative thermal expansion. In 25–700 °C, the coefficients of thermal expansion (CTE) of αa, αb and αc are ?5.81 × 10?6 °C?1, 4.80 × 10?6 °C?1 and -4.33 × 10?6 °C?1, and the αl of Sc2(MoO4)3 nanofibers is ?1.83 × 10?6 °C?1. 相似文献
18.
Decostere Bjorge Nele Daels Sander De Vrieze Pascal Dejans Tamara Van Camp Wim Audenaert Joël Hogie Philippe Westbroek Karen De Clerck Stijn W.H. Van Hulle 《Desalination》2009,249(3):942-1993
The aim of this study was to evaluate the use of nanofiber microfiltration membranes, spun by an innovative electrospinning technique, in water filtration applications. As such, this study bridges between developments in electrospinning techniques for the production of flat sheet membranes and the application of these membranes in water filtration. Three different applications were examined. First, the use of the membrane (functionalized or non-functionalized) for the removal of pathogens was investigated. Second the electrospun flat sheet membranes were applied in a lab scale submerged membrane bioreactor (MBR). Third, the electrospun membranes were applied as stand-alone filter for water treatment. Next to these applications, physical properties such as clean water permeability (CWP) and strength were also examined. The test showed that the electrospun membranes can be used for water filtration applications, but that further research is necessary towards irreversible fouling properties and level of functionalisation. 相似文献
19.
《Journal of the European Ceramic Society》2019,39(16):5338-5344
Calcium zirconate fibers were produced by electrospinning and characterized in this work. The solution was prepared from zirconium and calcium salts, using polyvinyl-pyrrolidone (PVP) as processing aid. The decomposition of the organic fraction and crystallization of calcium zirconate were followed by thermogravimetry and differential scanning calorimetry (TG/DSC). Raman Spectroscopy was used to measure the vibrational modes in the green as well as in the calcined fibers. The final phase composition was studied by means of X-ray diffraction (XRD). The fiber morphology was investigated by confocal laser scanning microscopy (CLS) and scanning electron microscopy (SEM). The formation reaction of calcium zirconate was observed at about 740 °C. Highly crystalline fibers were obtained already at 800 °C, but the crystallinity and calcium zirconate yield improved when the temperature was increased to 1000 °C. 相似文献
20.
Novel core-sheath nanofibers, composed of polyacrylonitrile (PAN) core and polypyrrole (PPy) sheath with clear boundary between them, were fabricated by electrospinning PAN/FeCl3·6H2O bicomponent nanofibers and the subsequent surface-initiated polymerization in a pyrrole-containing solution. By adjusting the concentration of FeCl3·6H2O, the surface morphology of PPy sheath changed from isolated agglomerates or clusters to relatively uniform thin-film structure. Thermal properties of PAN-PPy core-sheath nanofibers were also characterized. Results indicated that the PPy sheath played a role of inhibitor and retarded the complex chemical reactions of PAN during the carbonization process. 相似文献