首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(l-lactic acid) (PLLA)/graphene nanoplatelets (GnP) nanocomposites were prepared through solvent casting and coagulation methods. The better dispersion of graphene was achieved by ultrasounds and its effect on crystallinity, thermomechanical and electrical properties of PLLA were studied and compared in both methods. Differential scanning calorimetry (DSC) was used to investigate the crystallinity of PLLA and its composites. Field emission gun scanning electron microscope (FEG-SEM) and wide-angle X-ray scattering (WAXS) were employed to characterize the microstructure of PLLA crystallites. Dynamic mechanical thermal analysis (DMTA) was performed to study the thermomechanical properties of the nanocomposites. FEG-SEM images illustrated finer dispersion of GnP in samples obtained by coagulation method with respect to solvent casting method. Graphene imparted higher electrical conductivity to nanocomposites obtained by solvent casting under ultrasound due to better formation of graphene network. DSC thermograms and their resulting data showed positive effects of GnP on crystallization kinetics of PLLA in both methods enhanced by the nucleating effect of graphene particles. Meanwhile, the effect of GnP, as nucleating agent, was more prominent in samples produced by coagulation method without utilization of ultrasounds. WAXS patterns represented the same characteristic peaks of PLLA in nanocomposite specimens suggesting similar crystalline structure of PLLA in presence of graphene, and the intensified peaks of nanocomposites compared to neat PLLA confirmed the DSC results regarding its improved crystallinity. Graphene increased storage modulus in rubbery region and glass transition temperature of nanocomposites in the coagulation method due to restricted mobility of PLLA chains.  相似文献   

2.
The preparation and investigation of functionally graded polymer nanocomposites, which have a concentration gradient of cellulose nanocrystals (CNCs) along one direction, is reported here. As a test bed, a series of nanocomposites consisting of a thermoplastic polyurethane (PU) and 0–15% w/w CNCs is prepared via solvent casting and the mechanical properties of films of these materials are characterized by dynamic mechanical analyses and tensile tests. The formation of graded materials is accomplished by lamination of films with varying CNC content. The processing conditions are optimized to achieve intimate fusion of the individual layers. The elimination of internal interfaces is evidenced by an elongation at break of up to 500%. In order to explore potential applications of graded PU/CNC nanocomposites, structure‐dependent actuation in response to water is demonstrated in a bioinspired architecture. In addition, the damping behavior of cylindrical shaped composites is investigated by way of compression tests. The results show that functionally graded PU/CNC composites show good damping behavior over a much larger range of forces than the neat PU or the homogeneous nanocomposites.  相似文献   

3.
Nanocomposites of intercalated and exfoliated organosilicates in acrylonitrile butadiene rubber (NBR) were prepared by a solution‐blending method. The dispersion and intergallery spacings of organosilicates in these nanocomposites were examined by transmission electron microscopy and X‐ray diffraction. Dramatic enhancements in the mechanical and thermal properties of NBR are found by incorporating less than ten parts of organosilicate. In particular, the addition of ten parts of organosilicate provided a more than sixfold increase in tensile strength, a twofold increase in M500, and 168% and 39% enhancements in tear strength and elongation at break compared with pure NBR. The degradation temperature for NBR with ten‐parts' loading of organosilicate was 25°C higher than that of pure NBR. In addition, the relative vapor permeability of the NBR nanocomposites for water and methanol were 85% and 42% lower, respectively, than that of pure NBR. Polym. Eng. Sci. 44:2117–2124, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
Mechanically reinforced and thermally enhanced smectite/epoxy nanocomposites were synthesized using “direct” (without solvent) and “solvent” processing techniques. The molecular dispersion of smectite clay in the epoxy resin was investigated for its role in the rheology, structure formation, and properties of nanocomposites. The effects of three types of organic modifiers on the dispersion structure were compared. The use of solvent during processing assists in the enhancement of clay exfoliation. Rheology was used as a method to compare the degree of clay delamination in the resin matrix, as well as to estimate the suspension structure. The critical volume fraction (Φ*) and maximal packaging of smectites were determined and used for prediction of the viscosity. The qualitative changes in the nanostructure of suspensions above Φ*, due to flocculation of exfoliated clay layers, were compared with the alteration of the properties of nanocomposites, related to the structure formation and morphology. The curing kinetics were found to depend on both the organic modifier and solvent, but the extent of curing was roughly equivalent for the pure epoxy resin and the nanocomposites. The structure of the nanocomposites, either intercalated or exfoliated, produced by the direct processing technique was controlled by the organic modifier. By using solvent processing, the effect of the solvent dominates that of the organic modifier, presumably leading to exfoliated nanocomposites. The mechanical and thermal properties are strongly enhanced above the Φ* of smectites, and they are significantly dependent on the type of nanocomposite structure and the use of solvent. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2499–2510, 2005  相似文献   

5.
Freeze‐dried cellulose nanocrystals (CNCs) were dispersed in the thermoplastic polyurethane [Pellethane 2363‐55D (P55D)] by a solvent casting method to fabricate CNC‐reinforced nanocomposites. This study demonstrated that the addition of small amounts (1–5 wt %) of CNCs to P55D increased the thermal degradation temperature while maintaining a similar stiffness, strength, and elongation of the neat P55D. CNC additions to P55D did not alter the glass‐transition temperature, but the onset decomposition temperature was shifted from 286 to 327°C when 1 wt % CNCs was dispersed in the matrix. The higher onset decomposition temperature was attributed to the formation of hydrogen bonds between the hydroxyl groups on the CNC surface and urethane groups in the hard block of P55D. The ultimate tensile strength and strain to failure (εf) of the nanocomposites were minimally affected by additions up to 5 wt % CNCs, whereas the elastic modulus was increased by about 70%. The observation that εf was unchanged with the addition of up to 5 wt % CNCs suggested that the flow/sliding of the hard blocks and chains were not hindered by the presence of the CNCs during plastic deformation. The ramifications of this study was that CNC additions resulted in wider processing temperatures of P55D for various biomedical devices while maintaining a similar stiffness, strength, and elongation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41970.  相似文献   

6.
Supercritical fluids have been established as alternative foaming agents in various polymers as well as nanocomposite systems. Most recently, supercritical carbon dioxide (scCO2) has also been used in some studies as a medium of clay dispersion in the polymer matrix providing a solvent-free fabrication route for nanocomposites. In this work, this latter route was followed for the development of porous poly(ɿ-caprolactone) (PCL)/clay nanocomposites after pressure quench. Similarly, PCL/clay nanocomposites were also prepared using the solvent casting and melt blending methods and were then processed with scCO2 with the batch foaming technique (isothermal pressure quench) to produce their porous counterparts. Poor clay dispersion and non-uniform porous structures were observed when pure CO2 was used as a dispersion medium for nanocomposite preparation and as a blowing agent, respectively. On the contrary, polymer intercalation and more uniform cell structures were produced when CO2⿿ethanol mixtures were used as blowing agents.  相似文献   

7.
Nanocomposites of intercalated and exfoliated organosilicates in acrylonitrile butadiene rubber (NBR) were prepared by a two-stage melt blending method. The dispersion and interlayer space of organosilicates in these nanocomposites were examined by X-ray diffraction, transmission electron microscopy and field emission scanning electron microscopy. Dramatic enhancements in the mechanical and thermal properties of NBR were found by incorporating less than ten parts of organosilicates. In particular, the addition of 10 phr of the organosilicate in NBR provided more than a 360% increase in tensile strength, a two-fold increase in M500, a 93% increase in tear strength and a relative enhancement in elongation at break, as compared to the neat NBR. The degradation temperature for NBR with ten parts loading of organosilicate was 25 °C higher than that of the neat NBR. In addition, the relative vapor permeability of nanocomposites containing 15 phr of layered silicates was reduced, as compared to the neat NBR.  相似文献   

8.
The aim of this study is to investigate the processability of silica‐thermoset polymer matrix nanocomposites in terms of dispersion of silica nanoparticles and their effect on curing. Two thermosetting resins were considered, an epoxy and a polyester resin, with 5% silica, although 1% silica was also used in preliminary studies in the polyester system. Various combinations of mechanical mixing and sonication were investigated for the dispersion of silica nanoparticles under different processing conditions and times in solvent‐free and solvent‐containing systems. It was found that the best dispersion route involved a solvent‐aided dispersion technique. Consequently, different procedures for the solvent removal were investigated. Optical microscopy and SEM were used to characterize the resulting nanocomposites. DSC and rheological DMTA tests demonstrated that the silica nanoparticles shorten the gel time and promote curing in these thermosetting systems. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

9.
Thermoplastic polyurethane (TPU)/clay nanocomposite films were produced by incorporation of organo‐modified montmorillonite clay (Cloisite 30B) in TPU matrix by two different melt‐mixing routes (direct and master‐batch‐based mixing), followed by compression molding. In master‐batch mixing where the master‐batch was prepared by mixing of clay and TPU in a solvent, better dispersion of clay‐layers was observed in comparison to the nanocomposites produced by direct mixing. As a consequence, superior mechanical and gas barrier properties were obtained by master‐batch mixing route. The master‐batch processing resulted in 284 and 236% increase in tearing strength and tearing energy, respectively, with 5 wt % clay‐loading. Interestingly, in case of master‐batch mixing, the tensile strength, stiffness as well as breaking extension increased simultaneously up to 3 wt % clay‐loading. The helium gas permeability reduced by about 39 and 31% for the TPU/clay nanocomposites produced by mater‐batch and direct mixing routes, respectively, at 3 wt % loading of clay. Finally, the gas permeability results have been compared using three different gas permeability models and a good correlation was observed at lower volume fraction of clay. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46422.  相似文献   

10.
A series of glycerin‐crosslinked polyurethane (XPU)‐clay nanocomposites were prepared by in situ polymerization followed by solution casting and thermal treatment. The weight percent (wt %) of clay in the nanocomposites was varied between 0.25 and 10. The structural, rheological and dynamic mechanical properties of the nanocomposites were investigated. X‐ray diffraction (XRD) analysis showed that well dispersed clay platelets were formed in nanocomposites containing up to 1 wt % of clay. Scanning electron microscopy (SEM) showed that poorly dispersed and non‐exfoliated clays were present in composites containing >2 wt % of clay and resulted in phase‐separated disparities within the matrix. Rheological studies demonstrated that processability of polyurethane was significantly improved after clay addition such that solution viscosity decreased by between 76 and 90%. Furthermore, the presence of chemical and physical crosslink networks within the matrix resulted in a remarkable enhancement in the rubbery plateau storage modulus. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43346.  相似文献   

11.
In this study, effect of duration of ultrasonication process on structural characteristics and barrier properties of solvent‐free castor oil‐based polyurethane (PU)/organically modified montmorillonite (OMMT) nanocomposites was investigated. A series of PU/OMMT composites were synthesized by in situ polymerization technique through an ultrasonication‐assisted process at various processing durations. Effect of ultrasonication duration on de‐agglomeration of clay stacks in castor oil dispersions was evaluated by optical microscopy, sedimentation test, and viscosity measurement. Wide angle X‐ray diffraction and Fourier‐transform infrared spectroscopy were employed to investigate the effect of processing time on degree of delamination of clay platelets and interfacial strength between clay layers and PU matrix. Also, surface morphology of the nanocomposites was analyzed by atomic force microscopy. The results showed that by increasing the ultrasonication time up to 60 min, the size of clay agglomerates decreased and the interlayer spacing of clay platelets increased. To evaluate the effect of ultrasonication duration on transport properties of the PU/OMMT composites, diffusion coefficient and permeability were determined through water uptake test. Electrochemical impedance spectroscopy was carried out to analyze the barrier properties and to evaluate the corrosion performance of these composite coatings on carbon steel panels. It was found that by increasing sonication time, the barrier property of nanocomposites against diffusion of water molecules improved, which is due to further separation of clay platelets, enhancement of the traveling pathways for water molecules and improvement of interactions between the two components. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Ethylene‐vinyl alcohol copolymer(EVOH)/clay nanocomposites were prepared via a dynamic melt‐intercalation process. The phase morphology and the crystallization behavior of the nanocomposites were investigated, using DSC, DMTA, XRD and SEM. It was found that the treated clay content and dynamic processing time affect the viscosity of the EVOH/clay mixtures: higher clay contents and longer mixing times result in higher torque/viscosity levels. This is due to the increased interaction of the molten polar matrix (EVOH) with the treated organosilicate surface. Under the dynamic high shearing forces, the polymer penetrates the clay agglomerates/aggregates, intercalates within the organoclay galleries, and finally causes delaniination. Thermal analysis of the EVOH/clay nanocomposites showed that the melting temperature, crystallization temperature and heat of fusion of the EVOH matrix, sharply decrease with increasing both, the clay content and processing time. The intercalation level was characterized by X‐ray diffraction (XRD), which verified an increased gallery height. The DMTA spectra showed that longer processing times resulted in higher damping (E″ intensity) levels of the EVOH/clay composites, indicating higher fractions of the EVOH amorphous phase. However, no Tg changes were seen in spite of the high polymer/treated clay interaction levels, which may be attributed to a plasticizing effect of the low molecular weight organic cations.  相似文献   

13.
This study investigates the influence of enhanced dispersion of nanographite platelets (NGP) fillers through solvent casting mixing process on rheological, electrical and thermal properties of polylactide (PLA)/NGP composites. PLA/NGP composites were fabricated at 1 to 5 wt% filler contents by means of three processing techniques: (i) dry mixing and melt intercalation; (ii) solvent casting using dichloromethane organic solvent; and (iii) combination of solvent casting and melt intercalation techniques. The extent of dispersion of nanofillers within polymer matrix was evaluated through X‐ray diffraction and transmission electron microscopy analysis of the composites. Morphological studies of the samples revealed that the maximum extent of dispersion of NGP fillers within PLA matrix was achieved when the combination of solvent casting and melt intercalation processes occurred. Rheological analyses of the samples were indicative of deterioration in the composites produced through solvent casting mixing process. Despite of initial reduction in electrical resistivity of the composites after the addition of 1 wt% of NGP fillers, further addition of nanofillers did not exhibit a considerable enhancement in their electrical conductivity of the composites. Thermogravimetric analysis of the composites was demonstrative of enhancing impact of nanofiller loading, along with detrimental effect of solvent casting on the thermal stability of the PLA matrix. POLYM. ENG. SCI., 55:1560–1570, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
We have prepared nanocomposites of intercalated and exfoliated organosilicates in butadiene rubber (BR) by using a two‐stage melt blending process. We used X‐ray diffraction and transmission electron microscopy to examine, respectively, the intergallery spacing of the organosilicates and their dispersion in the BR. Marked enhancements in the mechanical and thermal properties of BR occurred when it incorporated <10 parts of organosilicates and the loading ratio of the organosilicate to dicarboxylic acid‐terminated butadiene oligomer was approximately three. In particular, the addition of 10 parts of organosilicate and 3 parts of compatibilizer in the BR led to a more than four‐fold increase in the tensile strength, a 150% increase in modulus at 100% elongation (M100), and 232 and 410% enhancements in the tear strength and elongation at break, respectively, relative to those of neat BR. The degradation temperature for the BR nanocomposite containing only a 10‐part loading of organosilicate was 51°C higher than that of neat BR; these increases reduced, however, to 9–13°C upon the addition of the CTB compatibilizer. In addition, the relative water vapor permeabilities of the BR nanocomposites containing 10 parts of organosilicate—both in the presence and absence of the compatibilizer—reduced to 20% of that of the neat BR. POLYM. ENG. SCI. 46:80–88, 2006. © 2005 Society of Plastics Engineers  相似文献   

15.
A neat poly(butylene terephthalate) (PBT) polymer and functionalized single-walled carbon nanotubes (F-SWNTs)/PBT nanocomposite films were prepared by solution casting technique. The SWNTs were functionalized by acid treatment, which introduced carboxylic groups onto the SWNTs. The morphological studies showed that the F-SWNTs were embedded and dispersed well within the PBT polymer matrix. The POM study illustrated that a neat PBT showed Maltese-type spherulites. It was also observed that the size of neat PBT spherulites was larger than F-SWNTs/PBT nanocomposite spherulites, which might be due to the nucleation effect of F-SWNTs in the case of nanocomposites. The thermal stabilities and mechanical properties such as stress yield and moduli of F-SWNTs/PBT nanocomposites were enhanced as compared to neat PBT. The DSC study showed that the melting temperature (T m) of PBT was slightly increased by addition of F-SWNTs. This increase in T m might be due to the formation of compact structure, which was formed through different types of molecular interactions with addition of F-SWNTs. It was also found that initially the solvent (distilled water, kerosene, 2 M HNO3 solution) uptake by neat PBT polymer and its nanocomposites increased gradually, which became steady after specific intervals for each sample. The results also exhibited that the solvent uptake of F-SWNTs/PBT nanocomposites was less than neat PBT.  相似文献   

16.
The influence of processing methods on the thermo‐mechanical properties of poly (lactic acid) (PLA) nanocomposites were investigated by preparing nanocomposites reinforced by halloysite nanotubes (HNTs) (from 0 to 10 [w/w%]) using solution casting (SC) and melt compounding (MC) methods. Statistical analysis revealed that the processing methods have a significant influence on the tensile properties, where nanocomposites prepared by MC have higher tensile properties compared to those by SC. Experimental results illustrated higher tensile strength and a drop in ductility under the higher strain rate as compared to the low strain rate for PLA/HNTs nanocomposites. At lower concentrations micrographs revealed that, HNTs dispersion was better for SC films as compared to MC, but more prominent HNTs aggregation at higher loadings. MC nanocomposites exhibited a high crystallinity as compared to SC, due to the recrystallization and nucleation effects. The thermal stability and activation energy increased with addition of HNTs, regardless of the processing methods. POLYM. COMPOS., 37:861–869, 2016. © 2014 Society of Plastics Engineers  相似文献   

17.
Nanocomposites of poly(ε-caprolactone) (PCL) and tungsten trioxide (WO3) were prepared by solvent casting using 5 and 10% of WO3 nanoparticles. The nanocomposites were characterized using several analytical techniques such as XRD, SEM, thermal analysis (TGA and DSC), spectroscopic methods (FTIR and UV/Vis) to gather information on the modifications introduced by WO3. Photodegradation of PCL/WO3 nanocomposites was studied exposing the samples to a Xenon lamp, which simulates the UV spectrum of the sun. The results obtained showed that due to the incorporation of WO3 nanoparticles, the nanocomposites exhibit higher thermal stability together with higher photodegradation efficiency.  相似文献   

18.
Biodegradable polycaprolactone/organoclay nanocomposites were prepared by solvent casting, using different amounts of filler and matrices differing by average molecular weight. Intercalated nanocomposites were obtained. The nanocomposites were characterized by wide‐angle X‐ray diffraction (WAXD) and small‐angle X‐ray scattering (SAXS) methods. Negligible variations in the degree of crystallinity were detected by WAXD. The thickness of crystalline lamellae, measured by SAXS, increased in low molecular weight polymer nanocomposites with increasing clay amount; this effect was weakened in matrices with high molecular weight. Differential scanning calorimetry showed an inhibiting effect of clay on crystallization. The composites' ductility was largely increased, whereas stiffness was retained. After biodegradation in compost, in all samples, the degree of crystallinity was increased, meaning that the less ordered portion of the sample was preferentially degraded. Clay slowed down the biodegradation rate, coherently with the observed increase in the lamellar thickness due to the filler. This may offer a strategy for tuning the biodegradability by calibrating their semicrystalline framework. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers.  相似文献   

19.
We studied the effects of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate (CAB)‐based bionanocomposites. The cellulose nanowhiskers in an aqueous medium were solvent‐exchanged to nonaqueous polar solvent (acetone) and used for nanocomposite processing by solution casting. The plasticized and unplasticized nanocomposites with 5 and 10 wt % cellulose nanowhisker content were prepared. Atomic force microscopy indicated nanoscale dispersion of whiskers in the CAB matrix. The dynamic mechanical analysis showed an increase in storage modulus with addition of cellulose nanowhiskers, especially above the glassy‐rubbery transition region. Thermogravimetric analysis showed an improvement in thermal stability with increased whisker content for both unplasticized and plasticized nanocomposites. The plasticized nanocomposites showed better transparency than the unplasticized composites, indicating a better dispersion of cellulose nanowhiskers in CAB, in the presence of a plasticizer. The dynamic mechanical properties and thermal stability increased, whereas transparency decreased with increased CNW content. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
以热塑性聚氨酯(PUR-T)为基体,以不同尺寸的多壁碳纳米管(MWCNTs1#及MWCNTs2#)为功能性填料,分别采用熔融共混和溶液共混法制备了不同填料含量的PUR-T基导电气敏纳米复合材料,并对纳米复合材料的力学性能、微观结构及其对挥发性有机物蒸汽(苯,四氯化碳、甲醛、乙醚)的气敏响应性能进行了系统研究。结果表明,采用溶液法制备的PUR-T/MWCNTs 2^#纳米复合材料在填料含量为5%时其体积电阻率从纯PUR-T的1012下降到105,并具有最佳的气敏响应综合性能。PUR-T基纳米复合材料对苯、甲醛等亲油性有机溶剂蒸汽具有较高的响应度(达到104~105级),而对甲醛、乙醚等亲水性有机溶剂蒸汽的响应度较低。纳米复合材料在苯蒸汽与干空气循环检测使用时均具有良好的稳定性。机理分析表明纳米复合材料的气敏行为主要是由于PUR-T基体的溶胀效应引起MWCNTs网络的断开和蒸汽分子在MWCNTs上的吸附所致,而前者起主要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号