首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wangqing Zhang  Xiaowei Jiang 《Polymer》2006,47(24):8203-8209
Core-shell-corona micelles with a thermoresponsive shell self-assembled by triblock copolymer of poly(ethyleneglycol)-b-poly(N-isopropylacrylamide)-b-polystyrene (PEG45-b-PNIPAM168-b-PS46) are studied by 1H NMR, light scattering and atomic force microscopy. The thermoresponsive triblock copolymer, which has a relatively short hydrophobic PS block, can disperse in water at room temperature to form core-shell-corona micelles with the hydrophobic PS block as core, the thermoresponsive PNIPAM block as shell and the hydrophilic PEG block as corona. At temperature above lower critical solution temperature (LCST) of the PNIPAM block, the PNIPAM chains gradually collapse on the PS core to shrink the size and change the structure of the resultant core-shell-corona micelles with temperature increasing. It is found that there possibly exists an interface between the PNIPAM shell and PEG corona of the core-shell-corona micelles at temperature above LCST of the PNIPAM block.  相似文献   

2.
Ke Zhang 《Polymer》2010,51(13):2809-18
A functional gelable triblock copolymer, poly(2-vinylpyridine)-block-poly(3-(triethoxysilyl)propyl methacrylate)-block-polystyrene (P2VP-b-PTEPM-b-PS), was prepared by the combination of reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerization and copper catalyzed click chemistry. Bulk microphase separation of P2VP310-b-PTEPM58-b-PS322 under different conditions was studied in order to prepare organic/inorganic nanoobjects by a procedure of crosslinking PTEPM phases and dispersing in a solvent. The conditions included using different annealing solvents and adding stearic acids to form supramolecular complexes with P2VP blocks respectively. Then the packed cylinders with P2VP cores and PTEPM shells dispersed in the PS matrix, lamella with alternating PS, PTEPM and P2VP layers, and the inverse cylindrical morphology with PS cores and PTEPM shells dispersed in the matrix of P2VP/stearic acid complex were obtained respectively just from the same triblock copolymer sample. After crosslinking PTEPM microdomains by sol-gel process and dispersing in solvents, a series of organic/inorganic polymeric nanoobjects, including two types of nanofibers with inverse internal structure and one novel kind of nanoplates, were produced. Further modification of the fibers with P2VP cores has been studied.  相似文献   

3.
Li Wang  Jiang Zhao  Charles C. Han 《Polymer》2008,49(8):2153-2159
Phase separation of a triblock copolymer, polystyrene-b-(ethylene-co-butylene)-b-styrene (SEBS) on the thin films of a homopolymer, polystyrene (PS), was studied by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The final morphology after phase separation was found to be greatly dependent on the relation between the molecular weight of the PS block and homo-PS. Dispersed spherical and worm-like micelles of SEBS were observed when the molecular weight of homo-PS is smaller than the PS block in SEBS, while large structures with inner micro-phase separation of SEBS was found when the molecular weight of homo-PS was much higher than that of the PS block. The origin of such a change in morphology is attributed to the difference of structure and interfacial tension at the interface between the matrix homo-PS and the PS block in SEBS triblock copolymer assembly.  相似文献   

4.
Micelles have been prepared by mixing poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymers and poly(acrylic acid) (PAA) homopolymers in organic solvents. Complexation via hydrogen bonding occurs between the P4VP and PAA blocks. Further aggregation of the accordingly formed complexes results in micelles stabilized by a corona of PS blocks. The influence of the relative lengths of the different blocks and of the quality of the solvent towards the complexes on the micellar characteristic features is studied. Soluble, non-aggregating, complexes have been observed in DMF, provided that the complexes are sufficiently small. In all other cases, the complexes were insoluble and aggregated in micelles. The size of those micelles depends strongly on the length of the P4VP blocks but only weakly on the PAA length.  相似文献   

5.
Nishar Hameed 《Polymer》2008,49(24):5268-5275
Nanostructured poly(?-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.  相似文献   

6.
Joachim Schmelz  Holger Schmalz 《Polymer》2012,53(20):4333-4337
We present a straightforward approach to well-defined 1D patchy particles utilizing crystallization-induced self-assembly. A polystyrene-block-polyethylene-block-poly(methyl methacrylate) (PS-b-PE-b-PMMA) triblock terpolymer is cocrystallized in a random fashion with a corresponding polystyrene-block-polyethylene-block-polystyrene (PS-b-PE-b-PS) triblock copolymer to yield worm-like crystalline-core micelles (wCCMs). Here, the corona composition (PMMA/PS fraction) can be easily adjusted via the amount of PS-b-PE-b-PMMA triblock terpolymer in the mixture and opens an easy access to wCCMs with tailor-made corona structures. Depending on the PMMA fraction, wCCMs with a mixed corona, spherical PMMA patches embedded in a continuous PS corona, as well as alternating PS and PMMA patches of almost equal size can be realized. Micelles prepared by cocrystallization show the same corona structure as those prepared from neat triblock terpolymers at identical corona composition. Thus, within a certain regime of desired corona compositions the laborious synthesis of new triblock terpolymers for every composition can be circumvented.  相似文献   

7.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

8.
9.
Jintao Zhu 《Polymer》2005,46(25):11962-11968
A convenient method of tuning aggregate morphologies from amphiphilic block copolymer by adding second selective solvent is introduced in this paper. Some novel aggregate morphologies, i.e. hierarchical vesicles (and compound spherical micelles) with one or more tails, were formed by introducing a second selective solvent for core-forming blocks into the poly(4-vinyl pyridine)-b-polystyrene-b-poly(4-vinyl pyridine) ABA amphiphilic block copolymer/co-solvent/water systems. Addition of selective solvent (toluene) for core-forming blocks (PS blocks) has significant effect on the aggregate morphologies from the amphiphilic triblock copolymer. The aggregate morphologies changed from spheres to rods, long tailed solid large compound spheres, and to long tailed hierarchical vesicles by adding 0.5, 10 and 30 wt% of toluene to the organic solvent, respectively. There exists an aggregate morphological transition of the long tailed hierarchical vesicles to long tailed solid spheres by decreasing the content of toluene in the organic solvent mixture. The tails disappeared, and irregular vesicular and spherical structures were formed when the toluene content was 20 wt%. The toluene addition is expected to increase the stretching of the core-forming blocks (PS), and to modify the interfacial tension of core-corona interface, which are the main reasons for the aggregate morphology transition. To the best of our knowledge, these tailed vesicles and spherical morphologies have not been found in block copolymer aggregates system up to now.  相似文献   

10.
A series of ABA type triblock copolymers [Poly(lactide)-block-poly(hexamethylene 2,3-O-isopropylidene tartarate)-block-poly(lactide)] PLA-b-PHIT-b-PLA based on renewable monomers l-tartaric acid and l-lactide have been synthesized and the effect of the PLA chain length on the properties of the triblock copolymers has been systematically investigated. The block nature of the copolymers was established by differential scanning calorimetry (DSC) which showed two glass transition temperatures (Tg) corresponding to PHIT and PLA blocks. Solution cast films of these triblock copolymers turned out to be brittle in nature and to overcome this, ε-caprolactone was copolymerized with l-lactide to generate a separate series of triblock copolymers [PLA-ran-PCL]-b-PHIT-b-[PLA-ran-PCL]. Our study systematically demonstrates that the PLA-to-PCL ratio in the outer block composition influences the mechanical properties via a delayed post-yield stress drop phenomenon. The study further elaborates the time-synchronized strain-field analysis of the novel triblocks to be a convincing approach for the characterization of micro-deformation modes.  相似文献   

11.
A series of amphiphilic triblock copolymers poly(ethylene glycol)-block-poly(acrylic acid)-block-poly(n-butyl acrylate) (PEG-b-PAA-b-PnBA) differing only in the relative block lengths were synthesized by the acid-catalyzed elimination of the tert-butyl groups from poly(ethylene glycol)-block-poly(tert-butyl acrylate)-block-poly(n-butyl acrylate) (PEG-b-PtBA-b-PnBA), which was synthesized by atom-transfer radical polymerization (ATRP). The degree of polymerization, molecular weight and percentage of hydrolysis of the product PEG-b-PAA-b-PnBA were studied by gel permeation chromatography (GPC), NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to study the aggregation states of copolymers in water solution. The radii of the copolymer micelles shrink as Ca2+ is introduced into the solutions. The crystallization behaviors of calcium carbonate controlled by copolymer 1 (PEG112-b-PAA86-b-PnBA60) and copolymer 2 (PEG112-b-PAA40-b-PnBA72) differing mainly in the length of PAA block were systematically studied. It was found that the crystallization products are composed of calcite and vaterite, and the ratio of vaterite to calcite increases with increasing the concentration of copolymer 1. For copolymer 2, however, only calcite is obtained at all the concentration range investigated in this work.  相似文献   

12.
Thermo-sensitive nanosized structures have been prepared in water from poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether) (PMVE-b-PIBVE) block copolymers. The composition and the architecture (diblock and triblock architectures) of the PMVE-b-PIBVE copolymers have been varied. The investigated copolymers had an asymmetric composition with a major PMVE block. While the PIBVE blocks are hydrophobic, the PMVE blocks are hydrophilic at room temperature and become hydrophobic above their demixing temperature (around 36 °C) as a result of the lower critical solution temperature (LCST) behavior. At room temperature, the amphiphilic copolymers aggregate in water above a critical micelle concentration, which has been experimentally measured by hydrophobic dye solubilization. The hydrodynamic diameter of the structures formed above the cmc has been measured by dynamic light scattering (DLS) while their morphology has been studied by transmission electron microscopy (TEM). 1H NMR measurements in D2O at room temperature reveal that the aggregates contain PIBVE insoluble regions surrounded by solvated PMVE chains. These investigations have shown that polydisperse spherical micelles are formed for asymmetric PMVE-b-PIBVE copolymers containing at least 9 IBVE units. For copolymers containing less IBVE units, loose aggregates are formed.Finally, the thermo-responsive, reversible properties of these structures have been investigated. Above the cloud point of the copolymers, the loose aggregates precipitate while the micelles form large spherical structures.  相似文献   

13.
We report on the synthesis and characterization of triblock terpolymers, polybutadiene-block-poly(2-vinyl pyridine)-block-poly(tert-butyl methacrylate) (PB-b-P2VP-b-PtBMA; BVT), via sequential living anionic polymerization in THF at low temperatures using sec-butyl lithium as initiator. In this work, 18 different BVT terpolymers were produced with volume fractions ΦB : ΦV : ΦT in the range of 1 : 0.4…1.2 : 0.2…4.6. All polymers exhibit a very narrow molecular weight distribution (PDI < 1.1). They were characterized in terms of bulk morphology using small-angle X-ray scattering and transmission electron microscopy, unveiling mostly lamellar patterns or hexagonally arranged cylindrical structures. Some polymers displayed a partial gyroid structure coexisting with lamellar parts or cylinders with a non-continuous shell around the PB core and could serve as an interesting template for the facile generation of multi-compartmental self-assembled structures. In one case the middle block, P2VP, is forming a helix around the PB core. Crosslinking of the polybutadiene compartment of the bulk morphologies with an UV-photoinitiator was performed, followed by sonication-assisted dissolution of the aggregates to elucidate further use of the terpolymers for the generation of soft polymeric nanoparticles with controlled functionality. In that way, core-crosslinked cylindrical micelles could be generated and characterized.  相似文献   

14.
Kaiqiang Chen  Qina Sa  Hanying Zhao 《Polymer》2008,49(11):2650-2655
In this paper, a new method to prepare polymer colloid particles stabilized by triblock copolymer with CdS nanoparticles was described. Poly(ethylene glycol-block-styrene-block-2-(dimethylamino) ethyl methacrylate) (PEG-b-PS-b-PDMAEMA) triblock copolymer was synthesized by sequential ATRP method. Micelles with CdS nanoparticles in the corona were prepared by “in situ” reaction of hydrogen sulfide with cadmium ion clusters in the corona of the micelles. The size of the CdS nanoparticles is affected by molar ratio of DMAEMA to cadmium ions and polymer concentration in the solution. When introduced into o/w emulsion the micelles reassemble on the surface of styrene oil droplets. PS colloid particles stabilized by triblock copolymer with CdS nanoparticles were achieved by suspension polymerization. TEM image indicates that CdS nanoparticles locate at the surface of the PS colloid particles.  相似文献   

15.
In this work, we investigated the effect of formation mechanisms of nanophases on the morphologies and thermomechanical properties of the nanostructured thermosets containing block copolymers. Toward this end, the nanostructured thermosets involving epoxy and block copolymers were prepared via self-assembly and reaction-induced microphase separation approaches, respectively. Two structurally similar triblock copolymers, poly(ε-caprolactone)-block-poly(butadiene-co-styrene)-block-poly(ε-caprolactone) (PCL-b-PBS-b-PCL) and poly(ε-caprolactone)-block-poly(ethylene-co-ethylethylene-co-styrene)-block-poly(ε-caprolactone) (PCL-b-PEEES-b-PCL) were synthesized via the ring-opening polymerization of ε-caprolactone (CL) with α,ω-dihydroxyl-terminated poly(butadiene-co-styrene) (HO-PBS-OH) and α,ω-dihydroxyl-terminated poly(ethylene-co-ethylethylene-co-styrene) (i.e., HO-PEEES-OH) as the macromolecular initiators, respectively; the latter was obtained via the hydrogenation reduction of the former. Both the triblock copolymers had the same architecture, the identical composition and close molecular weights. In spite of the structural resemblance of both the triblock copolymers, the formation mechanisms of the nanophases in the thermosets were quite different. It was found that the formation of nanophases in the thermosets containing PCL-b-PBS-b-PCL followed a reaction-induced microphase separation mechanism whereas that in the thermosets containing PCL-b-PEEES-b-PCL was in a self-assembly manner. The different formation mechanisms of nanophases resulted in the quite different morphologies, glass transition temperatures (Tg's) and fracture toughness of the nanostructured thermosets.  相似文献   

16.
A well-defined thermo- and pH-responsive ABC-type triblock copolymer monomethoxy poly(ethylene glycol)-b-poly(2-(2-methoxyethoxy) ethyl methacrylate-co-N-hydroxymethyl acrylamide)-b-poly(2-(diethylamino) ethyl methacrylate), mPEG-b-P(MEO2MA-co-HMAM)-b-PDEAEMA, was synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT). The ABC-type triblock copolymer was endowed thermo- and pH-responsive, corresponding to the thermosensitive properties of P(MEO2MA-co-HMAM) and pH-responsive properties PDEAEMA segments, respectively. The thermo- and pH-responsive properties of copolymer aqueous solutions were studied by UV transmittance measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM). The results showed that the N-hydroxymethyl acrylamide (HMAM) content in triblock copolymer affected the lower critical solution temperature (LCST) of the triblock copolymer aqueous solution. The copolymer self-assembled into core-shell micelles, with the thermoresponsive P(MEO2MA-co-HMAM) block and the hydrophilic PEG block as the shell, the hydrophobic PDEAEMA block as the core, in alkaline solution at room temperature. While in acidic media, when the temperature above the lower critical solution temperature (LCST) of the triblock copolymer aqueous solution, the copolymer self-assembled into P(MEO2MA-co-HMAM)-core micelles with mixed hydrophilic PEG and pH-responsive PDEAEMA coronas. Sol-gel transition temperature (Tsol-gel) for the triblock copolymer determined by vial inversion test further indicated that it is dependent on the concentration of the triblock copolymers and solution pH. Copolymer hydrogel loaded with bovine serum albumin (BSA) were used for the sustained release study. The results indicated that the hydrogel was a promising candidate for controlling protein drug delivery.  相似文献   

17.
Diblock copolymer based gold nanoparticle arrays are used to pattern diamond and silicon surfaces on the nanoscale. Taking advantage of diblock copolymers forming spherical reverse micelles, which self-assemble into hexagonally ordered arrays when deposited onto a surface, gold nanoparticle patterns are prepared from HAuCl4 loaded poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) micelles on top of diamond and silicon. By applying these particles as nanomasks for subsequent reactive ion etching, the hexagonal pattern is transferred into the substrate resulting in a corresponding array of diamond nanotips and silicon nanopillars, respectively. In the case of B-doped diamond, these nanotips exhibit a significantly enhanced electron emissivity as compared to a polished surface proving the new functionality resulting from nanopatterning field emitters of an unprecedented areal density.  相似文献   

18.
Self-assembly behavior of rod–coil–rod poly(γ-benzyl-l-glutamate)-b-poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate) (PBLG-b-PEG-b-PBLG) triblock copolymers with various PBLG block lengths in aqueous solution was investigated. The PBLG-b-PEG-b-PBLG triblock copolymers are able to self-assemble into vesicles when PBLG block length is relatively short. Meanwhile, the initial polymer concentration was found to have influence on the self-assembly. Giant vesicles can be observed when the initial concentration is high. Dissipative particle dynamics (DPD) simulations about the vesicles revealed that the rigid rod blocks could be aligned parallelly with each other to form the monolayer vesicles wall. When the PBLG block length in the PBLG-b-PEG-b-PBLG triblock copolymers increases, the aggregate morphologies were observed to transform from vesicles to spherical micelles. Based on the experimental and simulation results, we proposed a possible mechanism of the morphological transitions of the rod–coil–rod triblock copolymer aggregates.  相似文献   

19.
1H spin-diffusion solid-state NMR, in combination with other techniques, was utilized to investigate the effect of molecular architecture and temperature on the interphase thickness and domain size in poly(styrene)-block-poly(butadiene) and poly(styrene)-block-poly(butadiene)-block-poly(styrene) copolymers (SB and SBS) over the temperature range from 25 to 80 °C. These two block copolymers contain equal PS weight fraction of 32 wt%, and especially, polystyrene (PS) and polybutadiene (PB) blocks are in glass and melt state, respectively, within the experimental temperature range. It was found that the domain sizes of the dispersed phase and interphase thicknesses in these two block copolymers increased with increasing temperature. Surprisingly we found that the interphase thicknesses in these two block copolymers were obviously different, which was inconsistent with the theoretical predictions about the evolution of interphase in block copolymer melts by self-consistent mean-field theory (SCFT). This implies that the interphase thickness not only depends strongly on the binary thermodynamic interaction (χ) between the PS and PB blocks, but also is influenced by their molecular architectures in the experimental temperature range.  相似文献   

20.
Yanling Xu  Rujiang Ma  Yingli An 《Polymer》2007,48(6):1711-1717
A novel double-hydrophilic block copolymer poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP) with low polydispersity which could respond to both temperature and pH stimuli in aqueous solution was synthesized by atom transfer radical polymerization. Micellization of the copolymer in aqueous solution was characterized by dynamic and static laser scattering, 1H NMR and transmission electron microscopy. In aqueous solution, the copolymer existed as unimer at pH 2.8 at 25 °C. When the temperature was raised to 50 °C at pH 2.8, the copolymer associated into spherical core-shell micelles with the PNIPAM block forming the core and the P4VP block forming the shell. On the other hand, when pH was increased from 2.8 to 6.5 at 25 °C, the copolymer associated into spherical core-shell micelles with the core formed by the P4VP block and the shell formed by the PNIPAM block. The process was reversible. The critical aggregation temperature of the block copolymer is 36 °C, and the critical aggregation pH value is 4.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号