首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ding-Ru Yei 《Polymer》2005,46(3):741-750
We have prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. The nanocomposites were exfoliated at 3 wt% content of pristine clay relative to the amount of polystyrene (PS). We employed two surfactants for the montmorillonite: cetylpyridinium chloride (CPC) and the CPC/α-CD inclusion complex. Prior to polymerization, each surfactant intercalates into the layers of the pristine clay dispersed in water. The inclusion complex was characterized by X-ray diffraction, 13C CP/MAS NMR spectra, and 1H NMR spectroscopy, and TGA. X-ray powder patterns of the CPC/α-CD complex indicate that the α-CDs units form channels. The 13C CP/MAS NMR spectrum of the complex suggests that a CPC chain is included in the channel formed by the α-CDs. The 1H NMR spectra of the complexes indicate that the stoichiometry of the complexes is 1:2 (i.e. one CPC molecule and two α-CD units). The TGA reveals that the inclusion complex has higher thermal stability relative to the virgin CPC. We employed both X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize the structures of the nanocomposites. The value of Tg of the PS component in the nanocomposite is 6 °C higher than that of the virgin PS and its thermal decomposition temperature is 33 °C higher. The CPC/α-CD-treated clay is more effective than is virgin CPC-treated clay at enhancing the thermal stability of polystyrene.  相似文献   

2.
Huei-Kuan Fu  Jieh-Ming Huang 《Polymer》2008,49(5):1305-1311
Polystyrene-layered silicate nanocomposites were prepared from three new organically modified clays by emulsion polymerization method. These nanocomposites were exfoliated up to 3 wt% content of pristine clay relative to the amount of polystyrene (PS). The intercalated agents C20, C20-4VB, and C20-POSS intercalated into the galleries result in improved compatibility between hydrophobic polymer and hydrophilic clay and facilitate the well dispersion of exfoliated clay in the polymer matrix. Results from X-ray diffraction, TEM and Fourier transform infrared spectroscopy indicate that these intercalated agents are indeed intercalated into the clay galleries successfully and these clay platelets are exfoliated in resultant nanocomposites. Thermal analyses of polystyrene-layered silicate nanocomposites compared with virgin PS indicate that the onset degradation temperature ca. 25 °C increased and the maximum reduction in coefficient of thermal expansion (CTE) is ca. 40% for the C20-POSS/clay nanocomposite. In addition, the glass transition temperatures of all these nanocomposites are higher than the virgin PS.  相似文献   

3.
The organic–inorganic hybrid nanocomposites from high‐impact polystyrene/octavinyl polyhedral oligomeric silsesquioxane (HIPS/POSS) containing various percentages of POSS were prepared by free radical polymerization and characterized by Fourier transform infrared spectroscopy (FTIR), 1H‐NMR, thermal gravity analysis (TGA), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The octavinyl POSS has formed covalent bond connected PS‐POSS hybrid with polystyrene. POSS can well disperse in the composites at the composition of 0.5 and 1 wt%. The mechanical properties and thermostability of HIPS/POSS nanocomposites were significantly improved. The tensile strength, the izod impact strength, and the elongation at break of the nanocomposite containing 1 wt% of POSS was increased, respectively, by 15.73%, 75.62%, and 72.71% in comparison with pristine HIPS. The thermal decomposition temperature of HIPS/POSS (1 wt% of POSS) was 33°C higher than that of pristine HIPS. The HIPS/POSS nanocomposites showed great potential for applications in many fields, such as electric appliance and automotive trim. POLYM. COMPOS. 37:1049–1055, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
Polystyrene‐Organo Montmorillonite (PS‐MMT) nanocomposites were prepared by suspension free radical polymerization of styrene in the dispersed organophilic montmorillonite. The results of X‐ray diffraction (XRD) and Transmission Electron Microscopy (TEM) indicated that exfoliated nanocomposites were achieved. The effect of organic modifiers (surfactants) on the properties of the synthesized nanocomposites was studied. It is found that polystyrene‐MMT nanocomposite with 5.0 wt% of organo‐MMT gave the greatest improvement in thermal stability, and polystyrene‐MMT nanocomposites with 7.5 wt% of organo‐MMT showed the greatest improvement in mechanical properties, compared with that of pure polystyrene (PS) in our experimental conditions. The alkyl chain length of surfactant used in fabricating organo‐MMT affects the synthesized PS nanocomposites: the longer the alkyl chain length that the surfactant possesses, the higher the glass transition temperature of the PS nanocomposite, However, the organoclay in the nanocomposites seems to play a dual role: (a) as nanofiller leading to the increase of storage modulus and (b) as plasticizer leading to the decrease of storage modulus. This results in a lower storage modulus of PS‐TMOMMT and PS‐TMTMMT nanocomposites than that of PS‐TMDMMT and PS‐TMCMMT nanocomposites. Further study is needed to confirm the above hypothesis.  相似文献   

5.
This study describes the preparation of polystyrene–clay nanocomposite (PS‐nanocomposite) colloidal particles via free‐radical polymerization in dispersion. Montmorillonite clay (MMT) was pre‐modified using different concentrations of cationic styrene oligomeric (‘PS‐cationic’), and the subsequent modified PS‐MMT was used as stabilizer in the dispersion polymerization of styrene. The main objective of this study was to use the clay platelets as fillers to improve the thermal and mechanical properties of the final PS‐nanocomposites and as steric stabilizers in dispersion polymerization after modification with PS‐cationic. The correlation between the degree of clay modification and the morphology of the colloidal PS particles was investigated. The clay platelets were found to be encapsulated inside PS latex only when the clay surface was rendered highly hydrophobic, and stable polymer latex was obtained. The morphology of PS‐nanocomposite material (after film formation) was found to range from partially exfoliated to intercalated structure depending on the percentage of PS‐MMT loading. The impact of the modified clay loading on the monomer conversion, the polymer molecular weight, the thermal stability and the thermomechanical properties of the final PS‐nanocomposites was determined. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
A method was described for synthesis of exfoliated poly(styrene-co-methyl methacrylate)/clay nanocomposites through an emulsion polymerization with reactive surfactant, 2-acrylamido-2-methyl-1-propane sulfonic (AMPS) which made the polymer end-tethered on pristine Na-MMT.AMPS widened the gap between clay layers and facilitates comonomers penetrate into clay. Silicate layers affect the composition of comonomers, for example A0.3M10S10T5 showed the elevated composition of MMA end tethered on silicate when compared to the feed ratio and polar methyl methacrylate (MMA) was considered to have the stronger interaction with clay layers than styrene.The exfoliated structure of extracted nanocomposite was confirmed by XRD and transmission electron microscopy. The onset of thermal decomposition for nanocomposites shifted to a higher temperature than that for neat copolymer. The dynamic moduli of nanocomposites increase with clay content. Dynamic storage modulus and complex viscosity increased as the clay content increased. In low frequency region all prepared nanocomposites exhibited apparent low-frequency plateaus in the linear storage modulus. Complex viscosity showed shear-thinning behavior as the clay content increases.  相似文献   

7.
Polymer-clay nanocomposites are of great interest due to their improvement in certain material properties relative to virgin polymer or conventional composites. For example, compared to conventional materials, Nylon 6/montmorillonite nanocomposites demonstrated significant improvements, including high strength, high modulus and high heat distortion temperature. Because viscoelastic measurements are highly sensitive to the nanoscale and mesoscale structure of polymeric materials, when combined with X-ray scattering, electron microscopy, thermal analysis, and mechanical property measurements, they will provide fundamental understanding of the state and mechanism of exfoliation of the layered silicate (clay) in a polymer matrix. In addition, understanding rheological properties of polymer nanocomposites is crucial for application development and understanding polymer processability.The objective of this research is to develop a rheological technique to analyze the clay morphology in nanocomposite. Previous work has demonstrated the utility of the rheological technique to differentiate (qualify) the degree of exfoliation/dispersion. This report utilizes findings from the earlier work to further map out the structure-rheological response of polystyrene nanocomposites with various composition, clay types, and dispersion; and to quantify the key parameter that dominates the characteristic rheological response. This report explored a series of polystyrene (PS)-clay nanocomposites with 1,2-dimethyl-3-n-hexadecyl imidazolium (DMHDI) organically modified clays. These PS nanocomposites investigated here demonstrated a change of pattern in dynamic mechanical spectrum, as a function of the degree of exfoliation, from typical polymer response to a terminal response of [G′∼ω, G″∼ω], then to a pattern with double crossover frequencies, and finally to a solid-like response with G′>G″ in all frequency ranges. We showed that the number of particles per unit volume is a key factor determining the characteristic response of nanocomposites.In addition, the rheological response of PS-clays nanocomposite made from DMHDI modified clay combined with high-energy sonication (characterized as exfoliated by XRD and TEM) was compared with that of nanocomposites made by dimethyl, benzyl hydrogenated tallow (2MBHT) modified clay. We found that PS nanocomposites made by DMHDI-modified clay with high-energy sonication are better dispersed than the nanocomposites made previously using 2MBHT-modified clay. We also showed that the glass transition temperatures were not very sensitive to the degree of dispersion.The key finding of this research is that rheological measurements are complimentary to traditional polymer nanocomposite analysis techniques, and they may also serve as an analytical tool by itself (under appropriate conditions), now that some fundamental behavior has been identified.  相似文献   

8.
Polystyrene/clay (PS/clay) nanocomposites were synthesized by insitu emulsion and bulk polymerization methods. Sodium montmorillonite (Na-MMT) and two organically modified clays (Cloisite 30B and Cloisite 15A) were employed. The effect of clay swelling method and sonication on the d-spacing of silicate layers was also investigated. The surface morphology of pure PS and PS/clay nanocomposites were comparatively investigated using scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) of PS and PS/clay nanocomposites revealed the improved thermal stability of PS/clay nanocomposites compared to pure PS. Results of optical transparency tests showed the better transparency of nanocomposite films compared to the pure PS film.  相似文献   

9.
《Polymer》2007,48(6):1490-1499
Two polymerizable cationic surfactants, (11-acryloyloxyundecyl)dimethyl(2-hydroxyethyl)ammonium bromide (hydroxyethyl surfmer) and (11-acryloyloxyundecyl)dimethylethylammonium bromide (ethyl surfmer), were used for the modification of montmorillonite (MMT) clay. The modification of MMT dispersions was carried out by ion exchange of the sodium ions in Na+-MMT by surfactants in aqueous media. Modified MMT clays were then dispersed in styrene and subsequently polymerized in bulk by a free-radical polymerization reaction to yield polystyrene–clay nanocomposites. An exfoliated structure was obtained using the ethyl surfmer-modified clay, whereas a mixed exfoliated/intercalated structure was obtained using the hydroxyethyl surfmer-modified clay. Nanocomposite structures were confirmed by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The nanocomposites exhibited enhanced thermal stability and an increase in glass transition temperature, relative to neat polystyrene. The nanocomposites also exhibited enhanced mechanical properties, which were dependent on the clay loading. Intercalated polystyrene–clay nanocomposites were obtained using the non-polymerizable surfactant-modified clay (cetyltrimethylammonium bromide). Nanocomposites made from mixtures of surfmer-modified and CTAB-modified clays were also prepared, showing intermediate properties. However, when the nanocomposites were prepared in solution only intercalated morphologies were obtained. This was attributed to the competition between the solvent molecules and monomer in penetrating into clay galleries. These nanocomposites also exhibited enhanced thermal stability relative to the virgin polystyrene prepared by the same method. Similar temperatures of degradation (at 50% decomposition) were found for these nanocomposites relative to those prepared by bulk polymerization.  相似文献   

10.
A comparative study concerning the thermal stability of polystyrene (PS) and three polyhedral oligomeric silsesquioxane/polystyrene (POSS/PS) nanocomposites of formula R7R′(SiO1.5)8/PS (where R = isobutyl and R′ = phenyl), at various (3, 5, and 10%) POSS concentration was carried out in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Nanocomposites were synthesized by in situ polymerization of styrene in the presence of POSS and the experimental filler concentration in the obtained compounds, determined by 1H NMR spectroscopy, was in all cases slightly higher than that in the reactant mixtures. Inherent viscosity (ηinh) determinations indicated that the average molar mass of polymer in the nanocomposites was practically the same than neat PS and were in agreement with calorimetric glass transition temperature (Tg) measurements. The temperature at 5% mass loss (T5%) and the activation energy (Ea) of degradation process of synthesized nanocomposites were determined and compared with each other and with those of unfilled PS. On the basis of the results from thermal and IR spectroscopy characterizations, nanocomposite with 5% of molecular filler appears the most thermally stable. The results were also compared with literature data on similar PS‐based nanocomposites. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers  相似文献   

11.
A polyhedral oligomeric silsesquioxane (POSS) tethered imidazolium surfactant was used to exchange montmorillonite for the preparation of polymer nanocomposites in polystyrene, poly(ethylene-co-vinyl acetate), and polyamide-6 using a melt blending technique. Simultaneous temperature resolved small angle X-ray scattering and wide angle X-ray diffraction was used to monitor the surfactant stability and phase behavior of the polyamide-6 nanocomposites. Good thermal stability of the surfactant was in agreement with thermogravimetric analysis. Transmission electron microscopy revealed a mixed intercalated/exfoliated structure, with the presence of small tactoids exhibiting gallery spacings greater than 3.8 nm in all three polymers. Fluorescently tagged organically exchanged montomorillonite was used to assess the quality of nanoparticle dispersion. Exchanging the montmorillonite with lower loadings of the POSS surfactant slightly increased the size of clay tactoids, but did not significantly alter the gallery spacing or overall dispersion. The results suggest that the bulky and rigid structure of POSS, as well as its tendency to aggregate into ordered crystals, form a bilayer structure in the clay galleries and prevent montmorillonite from completely exfoliating, even in polyamide-6.  相似文献   

12.
The thermal degradation of two polyhedral oligomeric silsesquioxane/polystyrene (POSS/PS) nanocomposites of formula R8(SiO1.5)8 POSS/PS and R′1R7(SiO1.5)8 POSS/PS (where R′ = Phenyl and R = Cyclopentyl), at 5% of POSS concentration, was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Compounds were prepared by the polymerization of styrene in the presence of POSS. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the obtained thermogravimetric (TG) curves were discussed and interpreted. The initial decomposition temperature (Ti), the temperature at 5% mass loss (T5%), the glass transition temperature (Tg), and the activation energy (Ea) of degradation of nanocomposites were determined and compared with each other and with those of unfilled PS. The Ti, T5%, and degradation Ea values of nanocomposites were higher than those of neat PS, thus indicating a better heat resistance and lower degradation rate, and then a better overall thermal stability. The use of POSS with a symmetric structure, in the synthesis of PS based nanocomposite, showed a decrease of Tg value not only in respect to asymmetric POSS/PS nanocomposite but also in respect to neat polymer, thus suggesting an influence of filler structure in the thermal properties of the materials. POLYM. COMPOS., 33:1903–1910, 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Summary Polystyrene-Na+-montmorillonite(PS-Na+-MMT) nanocomposites are prepared by a simple emulsion polymerization. The X-ray diffraction(XRD) and infrared spectroscopy (IR) analysis confirm that polystyrene(PS) macromolecules can be inserted between lamella layers and whose layer separation is consequently higher than in the polymer-free clay. The enhanced thermal properties of composites are measured by differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) thermogram and indicate that the glass transition and the decomposition onset temperature of obtained nanocomposites are found to be moved to the higher temperature region. The increased Young's modulus of the obtained nanocomposites is ascribed to the intercalation of PS in clay galleries as well as the fine dispersion of clay particles into the polymer matrix. Received: 23 February 1999/Revised version: 26 March 1999/Accepted: 1 April 1999  相似文献   

14.
Fc-CHCH-C6H6-(C5H9)7Si8O12 (POSS1, Fc: ferrocene) which contain both metal and CC double bond was firstly synthesized by Wittig reaction. The chemical structure of POSS1 was characterized by FTIR, 1H, 13C and 29Si NMR, mass spectrometry and elemental analysis, and the magnetic property of POSS1 have also been studied. Polystyrene composites containing inorganic-organic hybrid polyhedral oligomeric silsesquioxane (POSS1) were prepared by bulk free radical polymerization. XRD and TEM studies indicate that POSS1 is completely dispersed at molecular level in PS matrix when 1 wt% POSS1 is introduced, while some POSS1-rich nanoparticals are present when content of POSS1 is beyond 3 wt%. GPC results show that molecular weight of the PS/POSS1 nanocomposites are increased with addition of POSS1. TGA and TMA data show the thermal stabilities of PS/POSS1 nanocomposites have been improved compared to neat PS. The PS/POSS1 nanocomposites also display higher glass transition temperatures (Tg) in comparison with neat PS. Viscoelastic properties of PS/POSS1 nanocomposites were investigated by DMTA. The results show the storage modulus (E′) values (temperature>Tg) and the loss factor peak values of the PS/POSS1 nanocomposites are higher than that of neat PS. Mechanical properties of the PS/POSS1 nanocomposites are improved compared to the neat PS.  相似文献   

15.
A series of novel polystyrene and poly(butyl methacrylate) montmorillonites (MMT-Na) nanocomposite latexes have been successfully prepared by emulsion polymerization. First of all, chemical modification of MMT-Na with a reactive coupling agent (MMT-QS) has been employed for the synthesis of hybrids. Subsequently, in situ seeded emulsion polymerization of hydrophobic vinyl monomers, such as butyl methacrylate and styrene, using sodium dodecyl sulfate (SDS) and ammonium persulfate (APS) as surfactant and initiator, respectively, were used for nanocomposite preparation. This technique allowed preparing of stable nanocomposite latexes with high (30–45 wt.%) solids contents and with loading of inorganic particles up to 5 wt.%. The prepared wet dispersions were subsequently characterized by light scattering method. In order to characterize the microstructure of the clay layers, and that of the organoclay in polystyrene and poly(butyl methacrylate) nanocomposites, wide and small angle X-ray analyses (WAXS, SAXS) and transmission electron microscopy (TEM) techniques were used.  相似文献   

16.
The polymerizable cationic surfactant, vinylbenzyldimethylethanolammouium chloride (VBDEAC), was synthesized to functionalize montmorillonite (MMT) clay and used to prepare exfoliated polystyrene–clay nanocomposites. The organophilic MMT was prepared by Na+ exchanged montmorillonite and ammonium cations of the VBDEAC in an aqueous medium. Polystyrene–clay nanocomposites were prepared by free‐radical polymerization of the styrene containing intercalated organophilic MMT. Dispersion of the intercalated montmorillonite in the polystyrene matrix determined by X‐ray diffraction reveals that the basal spacing is higher than 17.6 nm. These nanocomposites were characterized by differential scanning calorimetry (DSC), transmission electron micrograph (TEM), thermal gravimetric analysis (TGA), and mechanical properties. The exfoliated nanocomposites have higher thermal stability and better mechanical properties than the pure polystyrene. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1370–1377, 2002  相似文献   

17.
Poly(ε‐caprolactone)/clay nanocomposites were synthesized by in situ ring‐opening polymerization of ε‐caprolactone in the presence of montmorillonite modified by hydroxyl functionalized, quaternized polyhedral oligomeric silsesquioxane (POSS) surfactants. The octa(3‐chloropropyl) polyhedral oligomeric silsesquioxane was prepared by hydrolytic condensation of 3‐chloropropyltrimethoxysilane, which was subsequently quaternized with 2‐dimethylaminoethanol. Montmorillonite was modified with the quaternized surfactants by cation exchange reaction. Bulk polymerization of ε‐caprolactone was conducted at 110°C using stannous octoate as an initiator/catalyst. Nanocomposites were analyzed by X‐ray diffraction, transmission electron microscopy, thermo gravimetric analysis, and differential scanning calorimetry. Hydroxyl functionalized POSS was employed as a surface modifier for clay which gives stable clay separation for its 3‐D structure and also facilitates the miscibility of polymer with clay in the nanocomposites due to the star architecture. An improvement in the thermal stability of PCL was observed even at 1 wt % of clay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
In the present paper, three ammonium salts namely, tetraethylammonium bromide (TEAB), tetrabutylammonium bromide (TBAB), and cetyltrimethylammonium bromide (CTAB) were employed to prepare organoclay by cation exchange process. Polystyrene (PS) /clay nanocomposites were prepared by melt blending using commercial nanoclay and organoclays prepared using above mentioned salts. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis indicated that the modified clays were intercalated and/or exfoliated into the polystyrene matrix to a higher extent than the commercial nanoclay. Further, amongst the modified organoclays, TBAB modified clay showed maximum intercalation of clay layers and also exfoliation to some extent into the polystyrene matrix. TEM micrograph exhibited that TBAB modified clay had the best nanoscale dispersion with clay platelet thickness of ∼6–7 nm only. The mechanical properties of the nanocomposites such as tensile, flexural and izod impact strength were measured and analyzed in relation to their morphology. We observed a significant improvement in the mechanical properties of polystyrene/clay nanocomposites prepared with modified clays as compared to commercial organoclay, which followed the order as; PS/TBAB system > PS/CTAB system > PS/TEAB system. Thermogravimetric analysis (TGA) demonstrated that T10, T50 and Tmax were more in case of polystyrene nanocomposites prepared using modified organoclays than nanoclay [nanolin DK4] and maximum being in the case of PS/CTAB system. The results of Differential Scanning Calorimetry (DSC) confirmed that the glass transition temperature of all the nanocomposites was higher as compared to neat polystyrene. The nanocomposites having 2% of TBAB modified clay showed better oxygen barrier performance as compared to polystyrene.  相似文献   

19.
Crown ether‐modified clays were obtained by the combination of sodium and potassium clays with crown ethers and cryptands. Polystyrene nanocomposites were prepared by bulk polymerization in the presence of these clays. The structures of nanocomposites were characterized by X‐ray diffraction and transmission electron microscopy. Their thermal stability and flame retardancy were measured by thermogravimetric analysis and cone calorimetry, respectively. Nanocomposites can be formed only from the potassium clays; apparently the sodium clays are not sufficiently organophilic to enable nanocomposite formation. The onset temperature of the degradation is higher for the nanocomposites compared to virgin polystyrene, and the peak heat release rate is decreased by 25% to 30%.  相似文献   

20.
Debundling and dispersion of carbon nanotubes (CNTs) are very important for preparation of polymer/CNT nanocomposites. In the present study, a self-prepared gemini surfactant, 6,6′-(butane-1,4-diylbis(oxy))bis(3-nonylbenzenesulfonic acid), is employed to achieve homogeneous and stable dispersion of multi-walled carbon nanotubes (MWNTs) in organic solvent and subsequent polystyrene (PS)/MWNT nanocomposite. Sedimentation, optical microscopy and transmission electron microscopy studies demonstrate that the gemini surfactant can greatly improve the dispersion and stabilization of MWNTs in toluene. Scanning electron microscopic images clearly confirm the homogenous dispersion of individual MWNTs in PS. In addition, desired enhanced electrical conductivity and thermal stability of the nanocomposite relative to those of the neat PS are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号