首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal crystallization of isotactic polypropylene (iPP)/organic montmorillonite (OMMT) binary nanocomposite and iPP/OMMT/poly(ethylene-co-octene) (PEOc) ternary nanocomposites has been investigated by polarized optical microscopy (POM), rheometry and scanning electron microscopy (SEM). At the stage of nucleation the heterogeneous nucleation effect of OMMT was much greater than the concentration fluctuation assisted nucleation effect in the ternary nanocomposite. Besides, PEOc played a role of inhibitor of OMMT nucleation agents at the nucleation stage because many of OMMT layers were distributed around PEOc-rich domains. At stage II of the crystal growth process, the entanglement effect of PEOc greatly affected the rheological response (storage modulus (G′) and its growth rate) due to the long side chains of PEOc component. In stage III of the growth process, OMMT layers and the entanglement of PEOc chains limited the motion of polypropylene chains. So the growth rate of G′ was slowed down. During the shrinkage and cooling process after isothermal crystallization, some fibril links between the spherulites, consisting of PEOc chains and iPP chains, were formed from the amorphous phases surrounding the spherulites.  相似文献   

2.
V.V. Ray  A.K. Banthia 《Polymer》2007,48(8):2404-2414
Calorimetric experiments at cooling rates comparable to those during injection molding, as an example, are needed to study phase transitions under conditions relevant for processing. Ultra fast scanning calorimetry is a technique which provides a means to analyze the materials of interest under rapid cooling conditions and it is a promising technique by which the crystallization behavior of composite systems based on fast crystallizing polymers like isotactic polypropylene (iPP) can be studied. By combining conventional DSC and ultra fast chip calorimetry isothermal crystallization experiments were performed in the whole temperature range between glass transition and melting temperature of iPP. Because of the very small time constant of the calorimeter, isothermal crystallization processes with peak times down to 100 ms were investigated after cooling the sample from the melt at 2000 K/s. iPP grafted with maleic anhydride (PPgMA) - montmorillonite clay nanocomposites were studied. The influence of various clay loadings on the crystallization behavior of PPgMA at different temperatures was followed by ultra fast isothermal calorimetry. PPgMA clay nanocomposites showed a variation in crystallization peak times with different clay loadings at crystallization temperatures between 70 °C and 100 °C. No influence of clay loading was observed at lower crystallization temperatures. At these temperatures, where the mesophase is formed and homogeneous nucleation is expected, the contribution of the clay as a nucleating agent is negligible. For crystallization at about 80 °C, where the α-phase is formed, the nucleating effect of the clay is observed yielding complex crystallization kinetics. In the temperature range 75-85 °C in some nanocomposites a double peak during isothermal crystallization was observed corresponding to a fast and a slow crystallization processes occurring simultaneously. At higher temperatures, above 120 °C, the clay slightly retards the crystallization process.  相似文献   

3.
Crystallization of polyamide 11 at low supercooling of the melt proceeds via heterogeneous nucleation and spherulitic growth of lamellae, while at temperatures close to the glass transition homogeneous nucleation prevails, preventing spherulite formation and leading to formation of a large number of nanometer‐sized mesophase domains. It is shown that spherulitic and non‐spherulitic crystallization at low and high supercooling of the melt, respectively, can be enforced by tailoring the cooling conditions, causing a twofold semicrystalline morphology at ambient temperature. Analysis of non‐isothermal crystallization as a function of the cooling rate, using fast scanning chip calorimetry, reveals that in the case of polyamide 11 such twofold semicrystalline morphology is predicted when cooling at rates between about 20 and 200 K s?1, since then two separate crystallization events are observed. The prediction has been confirmed by preparation of films crystallized during ballistic cooling at different rates which then were analyzed regarding their structure using optical microscopy, X‐ray diffraction and calorimetry. The study is completed by discussion of implications of twofold non‐isothermal crystallization for structure evolution in polymer processing, as well as by providing information that such behavior is not only typical for polyamide 11 but also for isotactic polypropylene or poly(butylene terephthalate) as two further examples. © 2018 Society of Chemical Industry  相似文献   

4.
黄象安  陈稀 《合成纤维》1991,20(6):6-18
本文报导了用偏光显微镜观察IPP切片中β球晶的生长过程和形态;借助DSC法、光学解偏振法和大角X衍射法研究含不同β成核剂的IPP在等温和非等温条件下的结晶能力。实验结果表明,对比三种不同的成核剂,发现其结晶速率为RPP>DC>GD,而在纺丝过程中由于成核速率占主导作用,因此卷绕丝中β晶含量也为RPP>DC>GD。研究结果还表明,提高结晶温度,降低冷却速率,有利于提高β晶聚丙烯中的β晶含量。  相似文献   

5.
A self-seeding technique, coupled with isothermal crystallization, was used to prepare isotactic polypropylene specimens of varying spherulite size, but of constant crystallinity and lamellar thickness. The latter quantities were also varied by changing the isothermal crystallization temperature. The electrical lifetime at constant applied voltage, in a point-plane geometry, was measured. It was found that the electrical lifetime decreased with increasing spherulite size and, more weakly, with decreasing crystallinity (at a given spherulite size).  相似文献   

6.
A stochastic simulation scheme for predicting morphological development during nucleation and subsequent crystal growth based on predetermined crystallization kinetic data of a semicrystalline polymer under quiescent isothermal conditions is proposed. Based on previously obtained crystallization kinetic data for syndiotactic polypropylene (s‐PP) used as the input information, the simulation scheme was successful in predicting the morphological development of s‐PP during isothermal crystallization from the melt state. The predicted development of crystallinity during crystallization was reanalyzed with the Avrami macrokinetic model, and good agreement between the predicted and theoretical values for s‐PP was observed. On the basis of this simulation scheme, both the spherulite size and its distribution during the course of crystallization could also be predicted. Although the spherulitic growth rate influenced both the spherulite size and its distribution during the course of crystallization, it had no effect on the final spherulitic morphology or the resulting average spherulitic size. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The kinetics of isothermal crystallization of polymer blends in which the matrix is a crystallizable polymer is considered. It is shown that depending on the difference in interfacial energies the inclusions are rejected or engulfed by the growing spherulite. Other factors influencing rejection, engulfing, and/or deformation of dispersed particles of the second polymer are the viscosity of the melt, the spherulite growth rate, and the size of dispersed particles. If the difference in interfacial energies is positive, then rejection or engulfing requires additional work to be done by the crystallization front. This dissipation of energy decreases the spherulite growth rate. It is estimated that the rejection of the second component is the most important phenomenon in the crystallization of blends. The spherulite growth rate of isotactic polypropylene in blends with low-density polyethylene and several elastomers was studied as a function of crystallization temperature and concentration. The comparison of growth rate data with morphological changes occuring during crystallization of blends studied shows very good agreement with the theoretical predictions based on energetics considerations.  相似文献   

8.
The influence of organomodified nanoclay (montmorillonite) on the crystallization and melting mechanisms of isotactic polypropylene (iPP) was studied. Films of both neat polymer and clay nanocomposites were prepared after molecular weight optimization through melt extrusion. Products exhibited the tactoidlike morphology since no compatibilizers were used. The effect of introduction of nanoclay within the polymer was studied through isothermal crystallization and linear heating. The results indicated that low nanoclay concentrations induce the formation of the β‐crystalline structure, its formation being inhibited with high nanoclay contents. Dynamic nonisothermal bulk crystallization experiments indicated that nanoclays act as nucleating agents of iPP. Isothermal, bulk crystallization studies indicated that the crystallization process (induction time and crystallization kinetics) is proportionally accelerated by the nanoclay presence. There was also an accelerated formation of secondary crystallization when nanoclays were present in high concentrations. POLYM. ENG. SCI., 47:1889–1897, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   

10.
Poly(lactide) (PLA)/acetylated cellulose nanocrystals (ACN)/silica nanocomposites were prepared by solution casting. Surface modification of cellulose nanocrystal (CNC) was performed to prepare the ACN. The ACN and silica were expected to act as a mechanical reinforcement of PLA and a nucleation agent, respectively, to increase the crystallization rate. Introduction of acetyl groups on the surface of the cellulose nanocrystals was confirmed by Fourier transform infrared spectroscopy. A combined Avrami ? Ozawa analysis described the non‐isothermal crystallization effectively. The activation energy for the crystallization was calculated from the Kissinger and the Takhor equations. Spherulite growth behavior was observed by polarizing optical microscope and spherulite growth rate, the number of spherulite versus crystallization time have investigated. The development of PLA crystals and the thermal stability had a tendency to improve with increasing silica content. Increased tensile strength was observed due to the reinforcement effect of ACN and the morphology of the nanocomposites was investigated. © 2015 Society of Chemical Industry  相似文献   

11.
Interaction in the system isotactic polypropylene–calcite was investigated using X-ray diffraction and transmission electron microscopy. Calcite acts as a weak nucleation agent for polypropylene crystallization and its activity could be increased or decreased by a suitable surface treatment. Investigation of the morphology on the polypropylene–calcite interface using calcite single crystals disclosed the tendency of polypropylene for epitaxial crystallization along preferred substrate crystallographic directions. This tendency was analogous to polymer crystallization on other ionic crystals.  相似文献   

12.
The isothermal crystallization kinetics of polypropylene/montmorillonite (PP/MMT) nanocomposites synthesized via intercalation polymerization were investigated by using differential scanning calorimeter and polarizing optical microscope (POM). The crystallinity of the nanocomposites decreased with the increase of the montmorillonite content, indicating that the MMT layers dispersed in the PP matrices confined the PP chains and hindered the crystallization of the PP chains. The POM photographs showed that the spherulites of the PP/MMT nanocomposites were greatly decreased in size as MMT was introduced. On the other hand, the crystallization rate increased dramatically with the increasing of MMT content. The interfacial free‐energy per unit area perpendicular to PP chains in PP/MMT nanocomposites decreased with increasing MMT content, suggesting that the MMT layers acted as heterogeneous nuclei in the nucleation of crystallization. The nucleus density increased with the increasing of MMT content, leading to a positive effect on the crystallization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1978–1985, 2002  相似文献   

13.
The crystallization process of isotactic polypropylene (iPP) was studied under both dynamic and isothermal conditions for a series of multiwall carbon nanotube (MWCNT) composites with nanotube concentrations between 0.1 and 1.0% by weight. The nucleation activity of the nanofillers was confirmed for both dynamic and isothermal crystallization, and was shown to be composition dependent. The effect of the nanofiller on the crystallization of iPP was discussed using the temperature coefficients obtained to determine the interfacial free energy and free energy of nucleation. The basal interfacial free energy decreased with respect to that of neat iPP by up to 15% for as little as 0.1% MWCNT, subsequently decreasing linearly with increasing nanotube concentration. This behavior is in line with the crystallization behavior of iPP with conventional nucleating agents. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

14.
Differential fast scanning chip calorimetry has been employed to study nucleation/ordering during annealing the glass of quenched isotactic polypropylene. Initially non-ordered samples were annealed below the glass transition temperature for different periods of time, and the change of structure during isothermal annealing was then analyzed by monitoring the exchange of latent heat on heating. Primary result of this work is the proof of homogeneous nucleation of ordering and mesophase formation in the glassy state. It is suggested that only local non-cooperative mobility of molecular segments is required to form small, ordered domains, and that the classical nucleation theory, which restricts nucleation of the crystallization/ordering process of polymers to temperatures between the equilibrium melting temperature and the glass transition temperature, needs modification.  相似文献   

15.
Polypropylene/montmorillonite nanocomposites (PPCN) were prepared by melt intercalation with maleic anhydride modified low isotactic polypropylene as the compatibilizer. The linear and nonlinear rheological properties of polypropylene/montmorillonite nanocomposites were studied. The deviation from linear behavior occurred at a strain of 100 that was quite less than that for the polymer matrix. The results of dynamic frequency scan showed that the percolation threshold of PPCN was near 3 wt %. Having been subjected to steady preshear, the tactoids could be oriented preferentially in the shear direction, and the percolation network was ruptured. The magnitudes of the stress overshoots observed in the reverse flow experiments were strongly dependent on the rest time, which indicated that the ruptured network could be reorganized even under quiescent conditions. Furthermore, PPCN displayed a strain‐scaling stress response to the startup of steady shear. The maxima of the stress overshoots appeared at the stain of 100, which was consistent with the strain where the deviation of linear viscoelastic behavior started. It might imply that subjected to the deformation less than 100, the network structure could be regard as elastic one. Additionally, the analogous strain‐scaling stress response to the startup steady shear elucidated the structural analogy between PPCN and liquid crystal polymer solution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3609–3617, 2003  相似文献   

16.
The influence of an organic phosphate derivative in the crystallization of the monoclinic phase of isotactic polypropylene was studied by differential scanning calorimetry. To analyze the nucleation activity of the additive, the self‐nucleation process of the pure polymer was also studied by thermal techniques. A large increase in crystallization temperatures was obtained even for the lowest concentration of the additive, and its nucleating efficiency is the highest observed for α‐nucleating agents in isotactic polypropylene. The nucleating agent was also observed to increase the stability of the crystals formed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1669–1679, 2002; DOI 10.1002/app.10546  相似文献   

17.
The evolution of storage modulus measured by a rotational rheometer shows that the isothermal crystallization of isotactic polypropylene (iPP) melts in contact with aluminum plates (PP-Al) are considerably faster than that with stainless-steel plates (PP-SS). The difference is bigger at higher temperatures, and this behavior is opposite to that expected by our numerical simulation considering uniform bulk phase transition and substrate's ability to remove the latent heat. Polarized optical observations and surface energy evaluations via contact angle measurement indicate that surface energy of the substrates, including the effects of submicrometer morphology and roughness, should be the key factor to affect the crystallization of iPP. Transcrystallization zones, in which the nucleation density is controlled by the surface energy of substrates, were observed to grow toward the bulk with the thickness of about 0.2 mm for iPP to affect the global crystallization behavior. The critical value of surface energy of substrate to promote the interfacial crystallization of a polymer melt is derived, in terms of which the aluminum and stainless steel as well as optical glass, promote the surface nucleation with respect to the bulk nucleation of iPP. As a consequence, the conventional differential scanning calorimetry measurement mainly gives the heat fluxes of interfacial crystallization rather than the bulk crystallization due to the large surface-to-volume ratio of the specimen and the aluminum pan used which is a high surface energy substrate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Organic nucleating agents and inorganic nanoparticles, as well as their hybrid composites, affect the crystallization temperature and morphology of the monoclinic α-form of isotactic polypropylene (iPP). Techniques such as differential scanning calorimetry, hot-stage optical microscopy with cross polars, wide angle X-ray diffraction, and transmission electron microscopy were employed. Nanoparticles of zinc oxide function as efficient supports for 1,3,5-benzene tricarboxylic-(N-2-methylcyclohexyl)triamine because the temperature at which the maximum rate of iPP crystallization occurs during 10 °C/min cooling from the molten state increases from 111 °C for the pure polymer to 125 °C at low concentrations of this hybrid nucleating agent. In the absence of zinc oxide, 0.06 wt% of this aliphatic triamine recrystallizes near 165 °C and increases the crystallization temperature of iPP by 7 °C, relative to the pure polymer. Fluorinated aromatic triamines, such as 1,3,5-benzene tricaboxylic-(N-4-fluorophenyl)triamine, are weak nucleating agents that reduce spherulite size in isotactic polypropylene but only increase the crystallization temperature marginally when the polymer is cooled from the molten state. Both micro- and nanoparticles of zinc oxide reduce spherulite size in isotactic polypropylene, but smaller spherulites are observed when the inorganic nanoparticles exhibit dimensions on the order of 40-150 nm relative to micron-size particles. In contrast, 0.06 wt% of the aliphatic triamine in iPP yields a distorted birefringent texture under cross polars that is not spherulitic. Non-spherulitic birefringent textures in iPP are also observed when the aliphatic triamine nucleating agent is coated onto micro- or nanoparticles of zinc oxide. This study demonstrates that the nonisothermal crystallization temperature of isotactic polypropylene increases by an additional 7 °C when an aliphatic triamine is distributed efficiently within the polymeric matrix by coating this nucleating agent onto zinc oxide nanoparticles.  相似文献   

19.
Dodecyl amine functionalized graphene oxide (DA‐GO)/isotactic polypropylene (iPP) nanocomposites were prepared via solution mixing method. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and X‐ray photoelectron spectroscopy (XPS) verified that the DA was successfully grafted onto the surface of graphene oxide. The crystallization behavior of iPP/DA‐GO nanocomposites was investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). The DSC results of both isothermal and non‐isothermal crystallization process indicated that the addition of DA‐GO can decrease the half‐time crystallization (t1/2) and elevate crystallization peak temperature (Tp) of iPP. The results of isothermal crystallization kinetics showed that the overall crystallization rates of iPP/DA‐GO nanocomposites, especially with higher DA‐GO content, were much faster than that of neat iPP. During the non‐isothermal crystallization process, the nucleation ability (Φ) of nanocomposites containing 0.05, and 0.5 wt % DA‐GO were 0.83 and 0.69, respectively. And the crystallization activation energy of iPP decreased from 348.7 (neat iPP) to 309.2 and 283.1 kJ/m 2 by addition of 0.05 and 0.5 wt % DA‐GO, respectively. The decrease of Φ and indicated DA‐GO has strong heterogeneous nucleation effect and can promote the crystallization of iPP significantly. Additionally, POM micrographs showed the DA‐GO in iPP matrix can form more nucleation sites for the spherulite growth. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40000.  相似文献   

20.
Differential scanning calorimeter (DSC) and X‐ray diffraction methods were used to investigate the isothermal and nonisothermal crystallization behavior and crystalline structure of syndiotactic polystyrene (sPS)/clay nanocomposites. The sPS/clay nanocomposites were prepared by mixing the sPS polymer solution with the organically modified montmorillonite. DSC isothermal results revealed that introducing 5 wt% of clay into the sPS structure causes strongly heterogeneous nucleation, inducing a change of the crystal growth process from mixed three‐dimensional and two‐dimensional crystal growth to two‐dimensional spherulitic growth. The activation energy of sPS drastically decreases with the presence of 0.5 wt% clay and then increases with increasing clay content. The result indicates that the addition of clay into sPS induces the heterogeneous nucleation (a lower ΔE) at lower clay content and then reduces the transportation ability of polymer chains during crystallization processes at higher clay content (a higher ΔE). We studied the non‐isothermal melt‐crystallization kinetics and melting behavior of sPS/clay nanocomposites at various cooling rates. The correlation among crystallization kinetics, melting behavior and crystalline structure of sPS/clay nanocomposites is discussed. Polym. Eng. Sci. 44:2288–2297, 2004. © 2004 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号