首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
Poly(butylene terephthalate) (PBT) and acrylonitrile–butadiene–styrene terpolymers (ABS) alloys/organically modified montmorillonite (OMT) nanocomposites using terpolymers of random ethylene, methyl acrylate, and glycidyl methacrylate as the reactive compatibilizer were prepared by different melt‐mixing sequences. The microstructures were characterized by scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, and high‐resolution electron microscopy. It was found that order of mixing affects the dispersion state of OMT in the alloy matrix. The crystallization behavior of PBT in the compatibilized PBT and ABS alloys/OMT nanocomposites was studied by wide angle X‐ray diffraction. It revealed that order of mixing has influence on the preferential crystal growing direction of PBT owing to the antagonistic effect of ABS and OMT. Thermogravimetric analyses and differential scanning calorimetry also showed order of mixing changes the thermal property of the compatibilized PBT and ABS alloys/OMT nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2130–2139, 2007  相似文献   

3.
In the article, acrylonitrile-butadiene-styrene/polyvinyl chloride/organophilic Fe-montmorillonite (ABS/PVC/Fe-OMT) nanocomposites were prepared by melt intercalation method. In order to determine if the presence of iron ion in the structure of organophilic montmorillonite (OMT) lattice can affect thermal, flame retardance and smoke suppressant properties in the ABS/PVC blends. ABS/PVC/organophilic natural montmorillonite (Na-OMT) nanocomposites were prepared as the comparable sample. Fe-MMT and Na-MMT were treated by cetyl trimethylammonium bromide (CTAB). The information on morphologies and structures of ABS/PVC/OMT nanocomposites was obtained using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the nanocomposites were characterized by thermogravimetric analysis, and flame retardant properties were obtained via limiting oxygen index (LOI), UL-94 vertical burning test and smoke density. The nanocomposites, based on Fe-OMT, exhibited better flame retardance, better smoke suppressant properties, and lower degradation degree than those of pure ABS/PVC blends and the ABS/PVC/Na-OMT nanocomposites.  相似文献   

4.
Polyamide 6/polypropylene (PA6/PP=70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were prepared using twin screw extruder followed by injection molding. Maleated polypropylene (MAH-g-PP) was used to compatibilize the blend system. The mechanical properties of PA6/PP nanocomposites were studied through tensile and flexural tests. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the fracture surface morphology and the dispersion of the organoclay, respectively. X-ray diffraction (XRD) was used to characterize the formation of nanocomposites. The thermal properties were characterized by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The dynamic mechanical properties of PA6/PP nanocomposites were analyzed by using dynamic mechanical thermal analyzer (DMTA). The strength and stiffness of PA6/PP nanocomposites were improved significantly in the presence of MAH-g-PP. This has been attributed to the synergistic effect of organoclay and MAH-g-PP. The MAH-g-PP compatibilized PA6/PP nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PA6, PP and organoclay. TEM and XRD results revealed the formation of nanocomposites as the organoclay was intercalated and exfoliated. A possible chemical interaction between PA6, PP, organophilic modified montmorillonite and MAH-g-PP was proposed based on the experimental work.  相似文献   

5.
聚丙烯/蒙脱土纳米复合材料的制备与性能   总被引:67,自引:5,他引:62  
用烷基季铵盐对钠基蒙脱土进行有机化处理,使其成为有机蒙脱土。X射线衍射(XRD)表明有机阳离子已同钠离子发生离子交换作用,导致层间距扩大。用熔融插层法制备聚丙烯/蒙脱土纳米复合材料,测试了力学性能。通过XRD、DSC等手段研究了其结构与结晶行为,并与聚丙烯进行了对比。实验表明,通过熔融插层可使聚丙烯插层于蒙脱土片层之中,且所得聚合物的冲击强度有所提高。  相似文献   

6.
分别采用大分子溶液插层法和大分子熔融插层法制备了苯乙烯-丁二烯-苯乙烯共聚物(SBS),蒙脱土纳米复合材料,采用X射线衍射和透射电子显微镜对材料的结构进行了表征。结果表明,无论是采用大分子溶液插层法还是大分子熔融插层法,都能得到SBS/蒙脱土纳米复合材料。对于溶液插层法,蒙脱土插层剂的种类、SBS牌号对插层效果都有影响:对于熔融插层法,SBS牌号对是否形成插层型纳米复合材料影响最大,淬火对熔融挤出后得到的纳米复合材料无益。星形结构的SBS适宜于采用溶液插层法、线形结构的SBS适宜于采用熔融插层法制备纳米复合材料。  相似文献   

7.
PA6/蒙脱土熔融插层复合材料结构与性能分析   总被引:5,自引:0,他引:5  
通过熔融共混法插层复合制备了聚酰胺(PN)6/蒙脱土纳米复合材料,测试了力学性能并对不同蒙脱土含量的PA 6/蒙脱土纳米复合材料进行了对比。实验表明,通过熔融插层可使PN 6基体插层于蒙脱土中,所得到的复合材料的性能较PN 6有很大提高。蒙脱土特殊的层状结构使得利用熔融共混在机械力的作用下插层到纳米级复合材料成为可能。  相似文献   

8.
PP/PA6/OMMT复合材料力学性能与结晶性能的研究   总被引:1,自引:0,他引:1  
采用3种不同有机改性过的蒙脱土(牌号为DK2,DK3,DK5)熔融插层法制备了PP/PA6/OMMT纳米复合物材料,在此基础上使用1%~7%的DK2的蒙脱土再次制备PP/PA6/OMMT纳米复合物材料,借助力学性能测试和差示扫描量热法(DSC)对体系的力学性能和结晶性能进行了研究。结果表明:使用DK2制备的复合材料的力学性能优于使用DK3和DK5制备的复合材料的力学性能;相对于纯PP,PP/PA6/OMMT纳米复合物材料随OMMT含量的增加,拉伸强度和弯曲强度是先增加后降低,最大下降幅度分别为8.7%和5.3%;冲击韧性一直上升达到9.61kJ/m2。OMMT的加入,对PP/PA6有异相成核的作用,提高PP/PA6的结晶速率和结晶度。  相似文献   

9.
Abstract

In this paper, nylon was used as carbonisation agent instead of pentaerythritol (PT), and the melt intercalation method was used to synthesise polypropylene (PP)/nylon (PA6)/montmorillonite (MMT) flame retardant nanocomposites. The structure and flammability property of products were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis (TGA), cone calorimeter test, limiting oxygen index and vertical burning test. The results showed that the polymer chain was intercalated into the MMT's interlayer and the MMT dispersed into PP/PA6 matrix in the form of intercalation to get flaky texture. The appropriate content of MMT in composition is 4–6 mass%. The use of intercalated MMT increased the tensile strength of materials by 15·0% and the impact strength by 69·5%, and improved the flame retardant properties. The TGA showed that the char residue rate reached 12·3%. The cone calorimeter experiments indicated that the peak of heat release rate reduced by about 87% in comparison with the pure PP and the residue weight increased. The vertical burning test (UL 94) results indicated that the materials achieved V-0 grade.  相似文献   

10.
The effect of short‐chain amide (AM) molecules on the intercalation of montmorillonite clay has been investigated by the melt blending of polypropylene (PP) with clay in the presence of AM molecules such as 13‐cis‐docosenamide (erucamide). Polypropylene–clay nanocomposites (PPCNs) were prepared by the co‐intercalation of maleic anhydride grafted polypropylene (PP–MA) and an AM compound. The resulting nanocomposite structures were characterized with X‐ray diffraction (XRD) and transmission electron microscopy, whereas the thermal characterization of the PPCNs was conducted by thermogravimetric analysis. XRD results showed that the AM molecules intercalated into clay galleries and increased the interlayer spacing, a result confirmed by surface energy (contact angle) and melt flow index measurements. This additive allowed the formation of an intercalated nanocomposite structure, but an exfoliated PPCN structure was also formed with the use of AM with a PP–MA‐based compatibilizer. A new preparation method for PPCNs was, therefore, developed by the co‐intercalation of AM and PP–MA; this resulted in a significantly improved degree of intercalation and dispersion. The enhanced thermal stability of PPCN, relative to pure PP, further demonstrated the improved clay dispersion in the nanocomposite structures prepared by this method. A possible mechanism for the co‐intercalation of AM and PP–MA into the clay galleries is proposed, based on hydrogen bonding between these additives and the silicate layers. Consideration is also given to possible chemical reactions and physical interactions in this rather complex system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Polypropylene (PP)/clay nanocomposites prepared by melt blending using different clays and coupling agents based on maleic anhydride-grafted PP (MA-PP) were studied. Clay dispersion using field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscopy (TEM), and PP matrix morphology were characterized. Clay dispersion was improved in the presence of MA-PP, as shown by the higher particles surface density (number of particles/mm2) at all micro-, sub-micro- and nano-levels. The PP spherulite diameter was affected by both the presence of MA-PP and clay dispersion. Clay intercalation, characterized by both complementary X-ray diffraction (XRD) and TEM, was greatly influenced by the characteristics of MA-PP. The use of low molecular weight (Mw) MA-PP led to a good and uniform intercalation but with no further possibility to exfoliation. The use of higher Mw MA-PP led to a heterogeneous intercalation with signs of exfoliation. The crystallization behavior of nanocomposites was studied by differential scanning calorimetry (DSC). When fine clay dispersion was achieved with MA-PP, clay-nucleating effect was limited and lower crystallization temperature and rates were observed. It was also shown by wide angle X-ray diffraction (WAXD) that clay induced some orientation of α-phase PP crystallites.  相似文献   

12.
通过加入适量马来酸酐接枝聚乙烯(PE-g-MAH),用熔融插层法制备了聚乙烯(PE)/蒙脱土(MMT)纳米复合材料,采用X射线衍射(XRD)、透射电镜(TEM)等表征了复合材料的微观结构和形态。结果表明聚乙烯分子链已插入蒙脱土片层间,实现了插层复合。复合材料热稳定性和对气液阻透性的测定结果表明,与基体聚乙烯相比,复合材料的热分解温度有所提高,对有机溶剂及气体的阻性也有较大改善。  相似文献   

13.
The crystallization behavior and crystal structure of polyamide 6/montmorillonite (PA6/MMT) nanocomposites were investigated by differential scanning calorimetry and X‐ray diffraction, and an interesting behavior was observed. The material was prepared via melt compounding using an organophilic clay obtained by co‐intercalation of epoxy resin and quaternary ammonium into Na‐montmorillonite. A maximum in degree of crystallinity was obtained at 5 wt.‐% MMT and the reasons for this, based on the MMT layer distribution, were discussed. The degree of crystallinity showed a strong dependence on the cooling rates. In contrast with typical behavior, a higher cooling rate resulted in a higher degree of crystallinity. In nanocomposites, the γ‐crystalline phase was dominant.  相似文献   

14.
聚氯乙烯/蒙脱土纳米复合材料的制备与性能   总被引:38,自引:1,他引:37  
对钠基蒙脱土进行有机化处理,XRD表明有机阳离子已同钠离子发生离子交换。熔融法制备聚氯乙烯/蒙脱土插层复合材料,用X-射线衍射研究复合材料的结构,聚氯乙烯不能插层于钠基蒙脱土,但能插层于有机蒙脱土,形成剥离型纳米复合材料。采用DSC研究了聚氯乙烯/有机蒙脱土复合材料的玻璃化转变温度,研究结果表明,聚氯乙烯/有机蒙脱土比聚 乙烯/钠基蒙脱土复合材料的力学性能优异。  相似文献   

15.
2,4,8,10-Tetraoxa-3,9-diphosphaspiro[5.5]-undecane-3,9-dioxide-disubstitutio-acetamide-N,N-dimethyl-N-hexadecy-ammonium bromide (PDHAB) containing phosphorus–nitrogen structure was synthesized and characterized. A novel flame retardant, montmorillonite (Mt) modified by PDHAB (PDHAB-Mt), was prepared by ion-exchange of sodium montmorillonite (Na+-Mt) with PDHAB. The results of X-ray diffraction (XRD) indicated that PDHAB had intercalated with Na+-Mt and exfoliated LDPE/EVA/20% PDHAB-Mt nanocomposites had been obtained by polymer melt intercalation which was further supported by TEM. The flammability of LDPE/EVA/PDHAB-Mt nanocomposites was investigated by the cone calorimeter test. The results showed that the addition of flame retardant PDHAB-Mt enhanced the flame retardancy of LDPE/EVA blend significantly. The results of SEM and TEM indicated that PDHAB-Mt can achieve better dispersion in the chars after combustion and the intumescent char is formed for LDPE/EVA/PDHAB-Mt nanocomposites after combustion. It is found that the char structure plays an important role for PDHAB-Mt in LDPE/EVA blend. The flame retardancy of LDPE/EVA blend was also significantly improved by an addition of PDHAB-Mt in LDPE/EVA blend.  相似文献   

16.
赵亚红  薛振华  王喜明  王丽 《化工学报》2012,63(8):2655-2660
用X 射线衍射、透射电镜和扫描电镜对羧甲基纤维素/蒙脱土纳米复合材料的结构进行表征。采用溶液插层复合法制备纳米复合材料,探讨不同羧甲基纤维素与蒙脱土质量比、反应时间和反应温度对纳米复合材料吸附刚果红染料吸附量的影响,并初步研究了纳米复合材料的解吸性能。亚微观观察表明:羧甲基纤维素通过破坏蒙脱土的晶体结构插层进入蒙脱土层间,形成插层-剥离型纳米复合材料;当羧甲基纤维素与蒙脱土质量比为1∶1,反应时间为6 h,反应温度为60℃时,纳米复合材料对刚果红染料的吸附量最大,可达50.42 mg·g-1;当解吸试剂氢氧化钠浓度为0.01 mol·L-1时,超声波解吸50 min的纳米复合材料脱附率可达80.17%。  相似文献   

17.
To enhance the dispersibility of clay in polypropylene (PP) matrix, PP-g-(maleic anhydride/styrene) (MA/ST) was prepared as a compatibilizer by graft copolymerization of maleic anhydride (MA) and styrene (ST) with PP. The addition of ST was known to be effective in improving the graft degree. PP/clay nanocomposites with the compatibilizer were prepared by melt intercalation. The X-ray diffraction (XRD) peaks of (0 0 1) plane of the organo-modified montmorillonite (O-MMT) were shifted to lower angles by an addition of PP-g-(MA/ST), indicating the intercalation capability of PP-g-(MA/ST) in the silicate layers. Transmission electron microscopy (TEM) photographs showed that the O-MMT in the presence of PP-g-(MA/ST) was intercalated and partly exfoliated during melt mixing. The addition of O-MMT and PP-g-(MA/ST) improved the thermal stability, tensile and rheological properties of the nanocomposites.  相似文献   

18.
梁玉蓉  谭英杰 《化工学报》2008,59(6):1571-1577
采用熔体插层法制备聚丙烯(PP)/有机黏土(OMMT)纳米复合材料。XRD和TEM的测试结果表明,采用熔体插层法制备的PP/OMMT复合材料是剥离型纳米复合材料。力学性能实验结果表明,相容剂的加入提高了PP与OMMT之间的相互作用,使其各项力学性能都得到了提高;PP/OMMT纳米复合材料的各项力学性能在有机黏土含量较小的情况下,就可以有较大幅度的提高;与纯PP相比,相容剂含量为10 phr、有机黏土用量为1 phr的聚丙烯基纳米复合材料具有最好的各项力学性能。  相似文献   

19.
Nanocomposites based on polyamide 6 (PA6) and polypropylene (PP) have been prepared by melt compounding the above polymer matrices with two montmorillonite(MMT)‐type commercial organoclays which, from previous studies of ours and from some results reported in literature, resulted to be the most proper layered silicates to be dispersed in PP and PA6, respectively. The preparation of nanocomposites has followed two different approaches. In the first, melt blending was carried out by twin screw extrusion whereas, direct injection molding was used in the second method. X‐ray diffraction (WAXD) and transmission electron microscope (TEM) characterizations have evidenced that independently of the preparation approach, nanostructured material were obtained, which are intercalated in the case of PP and exfoliated in that of PA6. Also mechanical properties have demonstrated that nanocomposites prepared by applying the two methods were characterized by similar features. These findings demonstrate the effectiveness of direct injection molding in the preparation of nanocomposites, whose features are similar to those prepared by compounding. Indeed, the elongational deformation, applied in the former technique, might favor the clay dispersion in the polymer matrix. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

20.
Preparation and properties of polypropylene/org-attapulgite nanocomposites   总被引:4,自引:0,他引:4  
Lihua Wang  Jing Sheng 《Polymer》2005,46(16):6243-6249
Polypropylene (PP)/org-attapulgite (ATP) nanocomposites were prepared by melt blending in a mixer apparatus. Org-attapulgite was attained by silane coupling agent modification first and then graft-polymerization with butyl acrylate. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the clay morphology and the dispersion of the org-attapulgite, respectively. The changes of crystalline structure for PP nanocomposites were characterized by X-ray diffraction (XRD). The mechanical properties of PP/attapulgite nanocomposites were studied through tensile and impact tests. The thermal and dynamic mechanical properties were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The strength and stiffness of PP/org-ATP nanocomposites were both improved significantly in the presence of organic attapulgite. In addition, the incorporation of org-ATP also gave rise to an increase of the storage modulus and the changes of the glass transition temperature for PP composites. TEM and XRD results revealed the addition of attapulgite did not change the crystal structure of PP, however org-attapulgite acted as nucleating agents for the crystallization of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号