首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies.  相似文献   

2.
Assignment of signals in aliphatic region of 1H NMR spectrum for epoxidized natural rubber was carried out through NMR spectroscopy. The epoxidized natural rubber was prepared by epoxidation of purified natural rubber with peracetic acid in latex stage followed by degradation with propanal and ammonium persulfate. The resulting liquid epoxidized natural rubber was characterized through 1D- and 2D-NMR spectroscopy. The unknown signals in the aliphatic region of the 1H NMR spectrum were assigned through 13C NMR and two-dimensional heteronuclear shift correlation (HETCOR) measurement. The assignments were proved by two-dimensional inverse detected heteronuclear long-range shift correlation (HMBC) and two-dimensional homonuclear shift correlation (COSY) measurements, and they were supported with epoxidized squalene as a model compound through NMR spectroscopy.  相似文献   

3.
超声波降解全氟辛烷磺酸和全氟辛酸的动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
赵德明  丁成  徐新华 《化工学报》2011,62(3):829-835
引 言 全氟辛烷磺酸基化合物和全氟辛酸化合物是一类重要的全氟化表面活性剂,也是其他许多全氟化合物的重要前体.自20世纪60年代电化学氟化反应方法应用于全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)等全氟化合物的生产以来,已有上百种含有磺酰基的全氟有机化合物系列产品被开发生产并获得大量应用[1-2],美国3M公司曾是世界上最大的PFOS和PFOA生产厂家.  相似文献   

4.
The in‐vitro hydrolytic behavior of diblock copolymer films consisting of poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) was studied at pH 7.4 and pH 9.5 at 37°C. The degradation of these films was characterized at various time intervals by mass loss measurements, GPC, 1H‐NMR, DSC, FTIR, XRD, and SEM. A faster rate of degradation took place at pH 9.5 than at pH 7.4. Analysis of the molecular weight profile during the course of degradation revealed that random chain scission of the ester bonds in PCL predominates at the initial induction phase of polymer degradation. There was also an insignificant mass loss of the films observed. Mass spectroscopy was used to determine the nature of the water soluble products of degradation. At pH 7.4, a variety of oligomers with different numbers of repeating units were present whereas the harsher degradation conditions at pH 9.5 resulted in the formation of dimers. From the results, it can be proposed that a more complete understanding of the degradation behavior of the PCL‐b‐PEG copolymer can be monitored using a combination of physiological and accelerated hydrolytic degradation conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
In this work, a kind of aliphatic biodegradable polyesteramide (PEA) copolymer based on 6-aminocaproic acid, adipic acid, and 1,6-hexane diol was synthesized by melt polycondensation method, and was characterized by 1H-NMR, FTIR and DSC. The PEA fiber was prepared by melt-spinning method. Tensile properties of the as-spun and hot-drawn fibers were also investigated. Hydrolytic degradation behavior of PEA copolymer chips and fibers were evaluated by weight loss in PBS solution with different pH value. The alkaline degradation behavior of fiber was also studied on change of diameter and surface morphology. During alkaline degradation, the PEA fiber underwent surface erosion. This work was financially supported by Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and Sichuan Key Project of Science and Technology (06(05SG022-021-02)).  相似文献   

6.
A gold nanoparticle (GNP)–loaded microparticle was prepared by spray drying the mixture solution of GNP, cinnamoyl pluronic F127, and cinnamoyl alginate, and by dimerizing the cinnamoyl groups under the irradiation of UV light. The cinnamic acid content in the cinnamoyl polymers was determined by 1H NMR spectroscopy and colorimetric method. The GNP content in the surface of microparticle was 6.45% (w/w), determined by energy-dispersive X-ray spectroscopy. The cumulative release amount for 12?h at 45°C was markedly higher than that observed at lower temperatures. Near-infrared irradiation significantly promoted the release from the GNP-loaded microparticle because of heat generation from GNP.  相似文献   

7.
In this study, N‐allylsuccinamic acid (NASA) was synthesized in a single step with a yield of 85%. Carboxylic acid containing NASA was characterized through Fourier transform infrared (FTIR) radiation and 1H‐NMR and 13C‐NMR analysis, and then it was used for synthesis of poly(2‐hydroxylethyl methacrylate‐co‐N‐allylsuccinamic acid) [p(HEMA‐co‐NASA)] hydrogels. The structure of the obtained pH‐responsive p(HEMA‐co‐NASA) hydrogels were characterized with FTIR spectroscopy and scanning electron microscopy analysis, and their swelling characterization was carried out under different drug‐release conditions. In the application step of the study, the hydrogels were used for the in vitro release of vitamin B12 and Rhodamine 6G, which were selected as model drugs. We determined that the hydrogels used as a drug‐delivery matrix could release the drug they had absorbed under different release conditions (phosphate‐buffered saline, 0.9% NaCl, and pH 1.2) at high rates for time periods of up to 24 h. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39660.  相似文献   

8.
The influence of initial pH of the culture medium on hydrogen production was studied using sucrose solution and a mixed microbial flora from a soybean‐meal silo. Hydrogen production was not observed at pH values of 3.0, 11.0 and 12.0 but low production was observed at pH values 5.0 and 5.5. The pH of the experimental mixture decreased rapidly and produced hydrogen gas within 30 h. Methane was not detected at initial pH values between 6.0 and 10.0. The sucrose degradation efficiency increased as the initial pH value increased from 3.0 to 9.0. The maximum sucrose degradation efficiency of 95% was observed at pH 9.0. The maximum specific production yields of hydrogen, VFAs and alcohols were 126.9 cm3 g?1 sucrose (pH of 9.0), 0.7 gCOD g?1 sucrose (pH of 8.0) and 128.7 mgCOD g?1 sucrose (pH of 9.0), respectively. The relationship between the hydrogen ion concentration and the specific hydrogen production rate has been mathematically described. The best kinetic parameters on the specific hydrogen production rate were KOH = 1.0 × 10?7 mol dm?3 and KH = 1.1 × 10?4 mol dm?3 (r2 = 0.86). The maximum specific hydrogen production rate was 37.0 cm3 g?1 VSS h?1. © 2002 Society of Chemical Industry  相似文献   

9.
To chemically attach beta‐cyclodextrin (beta‐CD) molecules to cellulose diacetate (CDA), an isocyanate containing preformed polymer was synthesized by prepolymerization of CDA and toluene‐2,4‐diisocyanate (TDI), which was then grafted with beta‐CD. Effects of reaction temperature, time, and mixture ratio on reactions were observed. The structure of CDA‐beta‐CD was characterized by 1H‐ and 13C‐NMR spectra; the release of CDA‐beta‐CD with medicament naproxen by dynamic dialysis in the artificial simulated intestinal fluid (pH = 7.4) was studied in vitro. Results indicated that the release time could reach more than 8 h at a graft ratio of 68.7%, which showed a good controlled‐release drug effect. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The structural characterization of polyesters of citric acid (CA) with ethylene glycol and long‐chain aliphatic alcohols (ROH), prepared by the composition of the reaction mixture being adjusted slightly away from stoichiometric equivalence, was performed with 1H‐ and 13C‐NMR spectroscopy. The aliphatic alcohols employed were 1‐decanol, 1‐dodecanol, and 1‐octadecanol. The 13C‐NMR carbonyl region presented four groups of signals, two corresponding to the ester groups and two corresponding to the acid groups. However, symmetric and asymmetric groups of CA moieties were identified in the 13C‐NMR spectra. The ester yield from ROH decreased as the number of carbon atoms in the alcohols increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 302–306, 2003  相似文献   

11.
A series of acrylic monomers–starch graft copolymers were prepared by ceric ion initiation method by varying the amount of monomers. These graft copolymers were characterized by IR and 13C‐NMR spectroscopy. It was seen that as the concentration of monomer [acrylic acid (AA), methacrylic acid (MA), and methyl methacrylate (MMA)] increased the percent add‐on increased in all the graft copolymers, whereas grafting efficiency increased initially but showed a slight decrease with further increase in the monomer concentration (except for MMA). The release rate of paracetamol as a model drug from graft copolymers as well as their blends was studied at two different pH, 1.2 and 7.4, spectrophotometrically. The release of paracetamol in phosphate buffer solution at pH 1.2 was insignificant in the first 3 h for St‐g‐PAA‐ and St‐g‐PMA‐graft copolymers, which was attributed to the matrix compaction and stabilization through hydrogen bonding at lower pH. At pH 7.4, the release rate was seen to decrease with increase in add‐on. The tablet containing poly(methyl methacrylate) (PMMA) did not disintegrate at the end of 30–32 h, which may be attributed to the hydrophobic nature of PMMA. These results indicate that the graft copolymers may be useful to overcome the harsh environment of the stomach and can be used as excipients in colon‐targeting matrices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Hydrosoluble copolymers containing sulfonic acid groups incorporated into a macromolecule were synthesized. The group of polymers studied was obtained by free radical solution polymerization, using potassium persulfate as an initiator. The copolymerization of the monomers 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) and acrylamide (AA) was carried out at different pH values of the reaction medium of the monomer mix. The copolymers were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The viscosity behavior of the copolymers in NaCl solution showed a dependency on the pH of the reaction medium, with higher pH leading to lower viscosities. The acidic conditions of this medium affect the initiator decomposition rate, which is a probable cause of the viscosity variation, and the extent of decomposition increases with increasing pH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 192–198, 2003  相似文献   

13.
《Fuel》1986,65(6):764-768
The role of exchangeable cations in the release of carboxylic functional groups and tars from a Montana lignite has been studied. Pyrolysis was carried out in an entrained flow reactor using a dilute stream of coal particles, and high heating and cooling rates. Direct determination of the carboxylic functional groups on the coal and char samples by ion exchange with barium acetate was employed to study both the amount and kinetics of decarboxylation. These results indicate that the presence of metal cations decreases the extent of decarboxylation at temperatures of 973, 1073 and 1173 K when compared with the behaviour of an acid washed lignite. It was also possible to determine first order activation energy values using this direct measure of decarboxylation. The activation energies determined for decarboxylation were 100 and 97 kJ mol−1 for the raw and acid washed samples, respectively. Furthermore, it is reported that the presence of metal cations on the coal resulted in a decrease of tar release of 70–94%. Analysis of the tars by Fourier transform infrared spectroscopy indicated that the tars released during pyrolysis were more aliphatic when metal cations were present.  相似文献   

14.
The effect of saturated aliphatic fatty acids and a number of fluorinated polar organic compounds on the release of polyurethane foam from cold rolled steel has been investigated. Little release was observed with aliphatic acids of less than 10 carbons or with the organic compounds. Release behavior increased with aliphatic chain length from C12 to C18. Stearic acid release increased only marginally above 0.034 μ g/cm2. Infrared studies of demolded eluted surfaces indicated that stcaric acid at levels of up to 178 μ g/cm2 was apparently removed from the surface by foam.  相似文献   

15.
Microspheres were prepared from carboxymethylated chitosan (CM‐chitosan) and alginate by emulsion phase separation. Their structure and morphology were characterized with IR spectroscopy and scanning electron microscopy. Bovine serum albumin (BSA) was encapsulated in the microspheres to test the release behavior. The swelling behavior, encapsulation efficiency, and release behavior of BSA from the microspheres at different pHs and with a pH‐gradient condition were investigated. The BSA encapsulation efficiency was calculated to be 80%. The degree of swelling of the microspheres without BSA loaded at pH 7.2 was much higher than that at pH 1.0. The encapsulated BSA was quickly released in a Tris–HCl buffer (pH 7.2), whereas a small amount of BSA was released under acid conditions (pH 1.0) because of the strong electrostatic interaction between ? NH2 groups of CM‐chitosan and ? COOH groups of alginic acid and a dense structure caused by a Ca2+ crosslinked bridge. For the simulation of the processing of the drug under the conditions of the intestine, the microspheres were tested in a pH‐gradient medium, in which an acceleration of the release occurred at pH 7.4 after a lag time at a low pH (5.8–6.8). At pH 7.4, a large amount of BSA was released from the microspheres in a short time because of the rapid swelling of the microspheres. However, the release only depended on the diffusion of BSA at relatively low pHs, this resulted in a relatively low release. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 878–882, 2004  相似文献   

16.
l-Ascorbic acid was encapsulated in biopolymers to enhance (1) its encapsulation efficiency and (2) drug release ratio using different pH media. To achieve this goal, we used polycaprolactone (PCL), polyethylene glycol (PEG), and sodium alginate (SA) to prepare drug delivery system and spray dryer as our tool to obtain microspheres. In this manner, the importance of the study was to produce a stable and effective drug encapsulation system by PCL–PEG–SA polymer mixture by spray dryer. First we evaluated the effects of drying conditions and composition on the microencapsulation formulation and in the next stage the most uniformly distributed particles were selected and l-ascorbic acid was loaded. After that, drug encapsulation and drug release studies were performed. Drug release experiments were conducted at different pH solutions (pH 2.5, 7.4, and 9.6). Finally, drug release kinetics was determined by widely used equations to describe the degradation kinetics; zero-order, first-order, Higuchi, Hixson–Crowell, and Korsmeyer–Peppas. Furthermore, l-ascorbic acid release mechanism from microspheres was also determined. The release profiles of three microspheres obeyed the earlier developed kinetic models for performing possible release mechanisms. The Korsmeyer–Peppas model best described each release scenario.  相似文献   

17.
A new thermostable nitrilase‐producing isolate identified as Streptomyces sp. MTCC 7546 has been studied extensively for the optimization of enzyme production operating in batch mode. The benzonitrile was observed as inducer of nitrilase production. The isolate showed maximum nitrilase production after 24 h of incubation at optimal conditions. The strain grows well on a variety of carbon sources and produces the nitrilase that catalyses the hydrolysis of nitriles to acids without formation of amides. The enzyme is mostly active against mono‐ and di‐aliphatic nitriles (10 mmol L?1) at pH of 7.4 and at a temperature of 50 °C. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
This study addresses the removal of humic acid (HA) dissolved in an aqueous medium by a photoelectrocatalytic process. UV254 removal and the degradation of color (Vis400) followed pseudo‐first order kinetics. Rate constants were 1.1 × 10?1 min?1, 8.3 × 10?2 min?1 and 2.49 × 10?2 min?1 (R2 > 0.97) for UV254 degradation and 1.7 × 10?1 min?1, 6.5 × 10?2 min?1 and 2.0 × 10?2 min?1 for color removal from 5 mg dm?3, 10 mg dm?3 and 25 mg dm?3 HA respectively. Following a 2 h irradiation time, 96% of the color, 98% of the humic acid and 85% of the total organic carbon (TOC) was removed from an initial 25 mg dm?3 HA solution in the photoanode cell. Photocatalytic removal on the same photoanode was also studied in order to compare the two methods of degradation. Results showed that the photoelectrocatalytic method was much more effective than the photocatalytic method especially at high pH values and with respect to UV254 removal. The effect of other important reaction variables, eg pH, external potential and electrolyte concentration, on the photoelectrocatalytic HA degradation was also studied. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB). Fourier transform infrared spectroscopy (FTIR) confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS) + CALB after 24 h of the immobilization), as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30–60 °C) and pH (6–9). Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME) and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS) was used as a chitin-modifying agent.  相似文献   

20.
Dehydrated MCM-41 (S1) was functionalized under nitrogen with 3-chloropropyltriethoxysilane (CPTS) and 3-aminopropyltriethoxysilane (APTS) by grafting in toluene at 80 °C over 48 h to give the corresponding materials S2 and S3, respectively. Subsequently, S2 and S3 were suspended in methanol and reacted in a nitrogen atmosphere with betulinic acid (BA) for 48 h at 65 °C (in the presence of the triethylamine of S2) to give the BA-functionalized materials S4 and S5. All materials studied were characterized by powder X-ray diffraction, X-ray fluorescence, nitrogen gas sorption, multinuclear MAS NMR spectroscopy, thermogravimetry, UV spectroscopy, IR, SEM, and TEM. To study the release of BA, S4 and S5 were suspended in solutions simulating various body pH conditions (pH 7.4, 5.5, and 3.0). Results of the quantification of BA release by HPLC for S4 show a pH-dependent and very slow BA release following a logarithmic tendency, while S5 behaves differently, also pH-dependent but, in this case, fast release of BA which requires only days for total release of the therapeutic compound. In addition, the cytotoxic activity of all synthesized materials against various cancer cell lines was studied. The results show the absence of an antiproliferative effect on the surfaces without BA S1-S3, while an antiproliferative effect was observed with S4 and S5 and was attributed to the release of BA in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号