首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CPE/NR blends with blend ratio of 50/50% by weight were prepared with various blending conditions. The resistance to oil and thermal aging of the blends was investigated and correlated with phase morphology. The NR dispersed phase size in blends was found to decrease with increasing rotor speed up to 45 rpm and subsequently level off at higher rotor speeds. With increasing mixing time at a given rotor speed, NR dispersed phase size reached a minimum and increased again with a further increase in mixing time, caused by domain breakup and phase coalescence, respectively. In addition, the results revealed a strong relationship between NR phase size and resistances to oil as well as thermal aging, that is, the smaller the dispersed phase size, the higher the oil resistance and the thermal aging properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4038–4046, 2003  相似文献   

2.
The use of natural rubber (NR) for partly substituting elastomeric chlorinated polyethylene (CPE) was determined. Mechanical and thermal aging properties as well as oil resistance of the blends were also investigated. The amount of NR in blends significantly affected the properties of the blends. The blends with NR content up to 50 wt % possessed similar tensile strength to that of pure CPE even after oil immersion or thermal aging. Modulus and hardness of the blends appeared to decrease progressively with increasing NR content. These properties also decreased in blends after thermal aging. After oil immersion, hardness decreased significantly for the blends with high NR content, whereas no change in modulus was observed. The dynamic mechanical properties were determined by dynamic mechanical thermal analysis. NR and CPE showed damping peaks at about ?40 and 4 °c, respectively; these values correlate with the glass‐transition temperatures (Tg) of NR and CPE, respectively. The shift in the Tg values was observed after blending, suggesting an interfacial interaction between the two phases probably caused by the co‐vulcanization in CPE/NR blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 22–28, 2002; DOI 10.1002/app.10171  相似文献   

3.
Blends of 80/20 CPE/NR filled with various silica loadings were prepared, and their properties were determined. It was found that cure properties are influenced significantly by the addition of precipitated silica. Scorch time and cure time decrease with increasing silica loading, which could be explained by the thermal history attributed to the shear heating in the blending stage. An increase in crosslink density as a function of silica loading is believed to be caused by a migration of curatives to the NR phase. In terms of phase morphology, with increasing silica loading, the NR dispersed phase size decreases due to the increase in compound viscosity and, thus, the shear stress available for efficient blending. An increase in silica loading also enhances resistance to oil due to the decrease in the NR dispersed phase size associated with the dilution effect, but gives no significant impact on thermal aging resistance. According to the change in damping peak height associated with the shift in Tg of the CPE phase, silica appears to preferentially migrate to the CPE phase due to the strong interaction between CPE and silanol groups of the silica surfaces. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2218–2224, 2005  相似文献   

4.
The use of natural rubber (NR) for partly substituting elastomeric chlorinated polyethylene (CPE) was carried out. Sulfur curing was used to vulcanize NR phase in the blends. Mechanical, rheological, and thermal aging properties as well as oil resistance of the blends were investigated. The amount of NR in blends significantly affects properties of the blends. With NR content in blends up to 20 wt %, tensile properties are similar to those of the pure CPE, even after either oil immersion or thermal aging. Rheological properties of CPE/NR blends determined from the rubber process analyzer (RPA 2000) and parallel‐plate rheometer are controlled strongly by the blend composition. The viscoelastic behavior of pure CPE and the blends with CPE as a major component is governed by the viscous response, which could be seen from the high damping factor, particularly at high strain, the short linear viscoelastic range, and the high degree of pseudoplasticity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1129–1135, 2004  相似文献   

5.
The effect of the blend ratio on the thermal, morphological, and physicomechanical properties of (chlorinated polyethylene rubber)/(chloroprene rubber) (CPE/CR) blends was studied. Two distinct glass transition temperatures (Tg) of all blends were observed in differential scanning calorimetry curves, falling between the Tg of the two pure rubbers. Analysis of the blends by scanning electron microscopy showed both dispersed and continuous phase morphology that depended on the blend composition. Thermogravimetric analysis showed that all the compounds underwent two stages of thermal degradation. The Mooney viscosity and optimum cure times increased with the increase in CPE contents, whereas the scorch times decreased. The tensile strength and elongation at break decreased, whereas the 100% modulus, hardness, and compression set increased with the increase of CPE content; the tear strength had the lowest value for the 50/50 CPE/CR blend because of the poor miscibility. The results from thermal aging and oil resistance tests showed that pure CPE possessed better thermal aging property and oil resistance than those of pure CR. Thus, considerable improvement in oil resistance of the blend compounds was achieved with the increase of CPE content. J. VINYL ADDIT. TECHNOL., 21:18–23, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Kunyan Wang  Yu Zhang 《Polymer》2008,49(15):3301-3309
The addition of up to 6 part per hundred (phr) of an organoclay to a 80/20 (w/w) PTT/EPDM-g-MA blend led to ternary compounds that came together as a means of balancing stiffness/strength versus toughness/ductility. The effect of organoclay platelets on morphologies and mechanical properties of PTT/EPDM-g-MA/organoclay ternary nanocomposites had been studied by SEM, TEM, WAXD, and mechanical testing. For the 80/20 (w/w) blend, the clay platelets are located inside the dispersed domains of EPDM-g-MA phase. The clay platelets do not act effectively as a barrier for the coalescence of the dispersed domains. The complex viscosities (η) of the 80/20 (w/w) PTT/EPDM-g-MA blend increased with the amount of the organoclay increasing, which are proposed as the reason for the dispersed domain size (D) that becomes smaller at higher clay content. Mechanical tests show that the Young's modulus increases, whereas the tensile strength and the impact strength decrease when the content of the clay increases.  相似文献   

7.
Ke Wang 《Polymer》2007,48(7):2144-2154
In this study, both organoclay and EPDM-g-MA rubber were used to simultaneously improve the toughness and stiffness of polyamide 6 (PA6). We first prepared PA6/EPDM-g-MA/organoclay ternary nanocomposites using melt blending. Then the composites were subjected to traditional injection molding and so-called dynamic packing injection molding. The dispersion of clay, phase morphology, crystallinity and orientation of PA6 as well the mechanical properties were characterized by WAXD, SEM, DSC, 2D-WAXS and mechanical testing, respectively. The effects of clay on phase morphology and mechanical properties of PA6/EPDM-g-MA blends could be summarized as follows: (1) weakening interphase adhesion between PA6 and EPDM-g-MA rubber particles, resulted in increasing of rubber particle size, as the clay and rubber contents are low; (2) preventing coalescence of rubber domains, arisen in decreasing of rubber particle size, as the clay and rubber contents are high; (3) the blocking effect on the overlap of stress volume around rubber particles caused broadening of the brittle-ductile transition region and decrease of toughness, and (4) the effective stress transfer leading a better reinforcement when the interparticle distance is smaller than the critical value.  相似文献   

8.
The rheological properties, morphology, and oil resistance in natural rubber and nitrile‐butadiene rubber (NR/NBR) blends are investigated as functions of the blending conditions. It is found that the Mooney viscosity of the blends depends more strongly on the blending time than the rotor speed. The size of the NR dispersed phase is approximately independent of the rotor speed, but it decreases with increasing blending time up to 25 min. With a further increase in the blending time the NR dispersed phase size decreases. The results for the relative tensile strength, which is an indicator of oil resistance, are in agreement with those of the blend morphology, indicating that the oil resistance in a 20/80 NR/NBR blend strongly depends on the phase morphology of the blend. The smaller the size of NR dispersed phase, the higher the blend resistance to oil. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1232–1237, 2001  相似文献   

9.
In this study, a series of elastomeric nanocomposites based on specific amounts of polyamide6 (PA6)/chloroprene rubber (CR) blends which are compatibilized with ethylene propylene diene monomer-grafted-maleic anhydride (EPDM-g-MA) and different amounts of graphene oxide (GO) were prepared with melt mixing method. The effect of compatibilizer and reinforcement concentration in the PA6/CR blend matrix was investigated using theoretical and experimental analysis. Dispersion of nanoplatelets within rubber blend matrix was proven with transmission electron microscopy and field emission-scanning electron microscopy. The modified microstructure of samples showed the significant effect of EPDM-g-MA and GO on the size reduction of CR droplets in the PA6 continuous phase. The results from differential scanning calorimetry and dynamic mechanical thermal analysis revealed the effect of EPDM-g-MA and GO as an effective nucleating agent in PA6-enriched GO/CR (PA6EGO/CR). The findings obtained from thermogravimetric analysis displayed that the GO in the presence of an EPDM-g-MA as a compatibilizer can cause a higher thermal stability in PA6EGO/CR. From mechanical properties, by adding a compatibilizer to the PA6/CR blend, the tensile strength changed from 39.0 to 45.1, the Young's modulus altered from 522.2 to 716.0 and the elongation at break changed from 246.8 to 222.2. While incorporation of 5 phr of GO to the compatibilized blend, the tensile strength increased by 25.2%, the Young's modulus increased by 36.6% and the elongation at break decreased by 20%. The Christensen–Lo model used for analyzing the stiffness of PA6EGO/EPDM-g-MA/CR with emphasis on the influence of the interphase region to predict the effect of various loadings of GO and EPDM-g-MA of Young's modulus. The rheology and creep tests showed a significant effect of EPDM-g-MA and GO content on the rheology behavior of nanocomposites.  相似文献   

10.
Mechanical properties and morphological studies of compatibilised blends of PA6/EVA-g-MA and PA6/EVA/EVA-g-MA were studied as functions of maleic anhydride content (MA) and dispersed phase (EVA-g-MA) concentrations, respectively at blending composition of 20 wt% dispersed phase (EVA-g-MA or combination of EVA and EVA-g-MA). The maleic anhydride (MA) was varied from 1 to 6 wt% in the PA6/EVA-g-MA blend, whereas MA concentration was fixed at 2 wt% in the ternary compositions with varying level of EVA-g-MA. ATR-IR spectroscopy revealed the formation of in situ copolymer during reactive compatibilisation of PA6 and EVA-g-MA. It was found that notched Izod impact strength of PA6/EVA-g-MA blends increased significantly with MA content in EVA-g-MA. The brittle to tough transition temperature of reactively compatibilised blends was found to be at 23 °C. The impact fractured surface topology reveals extensive deformation in presence of EVA-g-MA whereas; uncompatibilised PA6/EVA blend shows dislodging of EVA domains from the matrix. Tensile strength of the PA6/EVA-g-MA blends increased significantly as compared to PA6/EVA blends. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase and the matrix. It is observed from the phase morphological analysis that the average domain size of the PA6/EVA-g-MA blends is found to decrease gradually with increase in MA content of EVA-g-MA. A similar decrease is also found to observe in PA6/EVA/EVA-g-MA blends with increase in EVA-g-MA content, which suggest the coalescence process is slower in presence of EVA-g-MA. An attempt has been made to correlate between impact strength and morphological parameters with regard to the compatibilised system over the uncompatibilised system.  相似文献   

11.
The phase morphology and oil resistance of 20/80 NR/NBR blends filled with different types of fillers and copolymers were investigated. In the case of filler effect, N220, N330, and N660 carbon blacks with different particle sizes were used. Additionally, the blends filled with nonblack‐reinforcing fillers, that is, precipitated and silane‐treated silica, were investigated. To study the compatibilization effect, maleated ethylene propylene diene rubber (EPDM‐g‐MA) and maleated ethylene octene copolymer (EOR‐g‐MA) were added to the blends. The results revealed that the addition of filler, either carbon black or silica, to the blend caused a drastic decrease in NR dispersed phase size. Carbon blacks with different particle sizes did not produce any significant difference in NR dispersed phase size under the optical microscope. Silica‐filled blends showed lower resistance to oil than did the carbon black–filled blends. In addition, it was determined that neither EOR‐g‐MA nor EPDM‐g‐MA could act as a compatibilizer for the blend system studied. The oil resistance of the blends with EPDM‐g‐MA is strongly affected by the overall polarity of the blend. In the case of EOR‐g‐MA, the oil resistance of the blends is significantly governed by both overall polarity of the blend and phase morphology. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1156–1162, 2003  相似文献   

12.
Recent work has shown that nylon 6/acrylonitrile–butadiene–styrene (ABS) blends can be made tough by the addition of some polymer additives that are chemically reactive with nylon 6 and physically compatible with the styrene-acrylonitrile copolymer (SAN) phase of ABS. Imidized acrylic polymers (IA) represent a successful example of such additives that improve the dispersion of ABS in the nylon 6 matrix and render the blends tough. This article examines the possibility of toughening nylon 6 with ethylene/propylene/diene elastomer grafted with SAN copolymer (EPDM-g-SAN). This EPDM-g-SAN consists of 50% rubber and 50% SAN by weight. However, it was found that the same IA that works well to disperse ABS materials of similar rubber content is not as effective for EPDM-g-SAN, primarily because the EPDM forms the continuous phase, not SAN, and, thus, interfaces with nylon 6 during melt blending. Maleated elastomers like maleic anhydride grafted ethylene–propylene copolymer (EPR-g-MA) and styrene–(ethylene-co-butylene)–styrene triblock copolymer (SEBS-g-MA) were more effective for dispersing EPDM-g-SAN in the nylon 6 matrix than IA. Various mechanisms that improve the dispersion are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Pressed films of blends of polystyrene (PS) with ethylene–propylene diene monomer rubber (EPDM) or grafted copolymer of styrene (St) onto EPDM (EPDM-g-St) rubber were examined by small-angle X-ray scattering (SAXS), and scanning electron microscope (SEM). Small-angle X-ray scattering from the relation of phase was analyzed using Porod's Law and led to value of interface layer on blends. The thickness of interface layer (σb) had a maximum value at 50/50 (PS–EPDM-g-St) on blends. The radius of gyration of dispersed phase (domain) and correlation distances ac in blends of PS–EPDM-g-St were calculated using the data of SAXS. The morphology and structure of blends were investigated by SEM. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 805–810, 1998  相似文献   

14.
The vulcanization of natural rubber (NR)‐blended acrylonitrile–butadiene–styrene (ABS) was carried out with a phenolic curing agent by a melt‐mixing process. The NR compound was first prepared before blending with ABS. The effects of the phenolic curative contents (10, 15, and 20 phr) and blend proportions (NR/ABS ratio = 50 : 50, 60 : 40, and 70 : 30) on the mechanical, dynamic, thermal, and morphological properties of the vulcanized NR/ABS blends were investigated. The tensile strength and hardness of the blends increased with increasing ABS content, whereas the elongation at break decreased. The strength property resulting from the thermoplastic component and the vulcanized NR was an essential component for improving the elasticity of the blends. These blends showed a greater elastic response than the neat ABS. The thermal stability of the blends increased with increasing ABS component. Scanning electron micrographs of the blends showed a two‐phase morphology system. The vulcanized 60 : 40 NR/ABS blend with 15‐phr phenolic resin showed a uniform styrene‐co‐acrylonitrile phase dispersed in the vulcanized NR phase; it provided better dispersion between the NR and ABS phases, and this resulted in superior elastic properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42520.  相似文献   

15.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

16.
The present investigation deals with the mechanical and morphological properties of binary polyamide 12/maleic anhydride-grafted styrene-b-(ethylene-co-butylene)-b-styrene rubber (PA12/SEBS-g-MA) blends at varying dispersed phase (SEBS-g-MA) concentrations. Tensile behavior, impact strength and crystallinity of these blend systems were evaluated. Influence of microstructure, dispersed phase particle size, and ligament thickness on the impact toughness of the blend was studied. DSC data indicated an increase in crystallinity of PA12 in the blends. Tensile modulus and strength decreased while impact strength and elongation-at-break increased with the elastomer concentration. The enhanced properties were supported by interphase adhesion between the grafted maleic groups of rubber with polar moiety of polyamide 12. Analysis of the tensile data employing simple theoretical models showed the variation of stress concentration effect with blend composition.  相似文献   

17.
The rheological, phase morphologic, thermal and mechanical properties of poly (trimethylene terephthalate)/metallocene polyethylene (PTT/mPE) blends in the presence of ethylene propylene diene monomer copolymer grafted with maleic anhydride (EPDM-g-MAH) as compatibilizer are studied by means of a capillary rheometer, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). Results suggest that the compatibility of PTT/mPE blends is improved greatly after the addition of a compatibilizer. The radius of the dispersed phase in the system decreases greatly when the compatibilizer is added into the blend. When the amount of compatibilizer exceeds 8 wt-%, the size of dispersed phase becomes larger again. This phenomena could be attributed to the higher viscosity of the EPDM-g-MAH phase, which is dispersed more difficulty in the PTT phase of lower viscosity, thus the mixing efficiency is apparently decreased during the melt blending process. Moreover, the melt viscosity of the blend reaches the maximal value in case of 4 wt-% compatibilizer content, above which it would decrease again. This result is associated with the generation of more and bigger dispersed phase inside the bulk phase, thus the grafting efficiency at the interface is decreased, which could result in lower viscosity. The DSC results suggest that the mPE component shows a nucleating effect, and could increase the overall degree and rate of PTT crystallization, while the addition of a compatibilizer might slightly diminish these effects. In addition, the blend with 4 wt-% compatibilizer shows the best thermal stability. Furthermore, the Izod impact strength and the tensile strength at room temperature of the blend are also markedly improved by the addition of a 4–8 wt-% compatibilizer.  相似文献   

18.
The curing characterizations of natural rubber (NR) and styrene butadiene rubber (SBR) lattices and their blends with and without NR-g-MA and SBR-g-MA were studied by using oscillating disc rheometer methods. The minimum value for torque decreases with increasing NR in the blends and with the incorporation ofNR-g-MA and SBR-g-MA. The value of maximum torque increases with increasing of SBR in the blend and with the presence of (NR-g-MA and SBR-g-MA) is decreased. The mechanical properties of the samples were studied. The tensile strengths increased steadily with an increase of NR content in the blend. Thermal characteristics of these latex blends were studied by thermogravimetric analysis. Thermal degradation of these individual lattices and their blends were investigated with special reference to blend ratio and vulcanization techniques. As the SBR content in the blends increased their thermal stability was also found to increase. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

19.
Cong Wang 《Polymer》2006,47(9):3197-3206
One of the most important findings in polymer-toughening is known as the critical matrix ligament thickness (τc) theory, which is directly related to both rubber concentration and average size of particles. All these studies assume that rubber particles are spherical and randomly distributed in the matrix. Rubber particles may be stretched and oriented along the shear flow direction in real processing. In this paper the effect of stretched and oriented rubber particles on the impact strength of PA6/EPDM-g-MA blends have been studied via dynamic packing injection molding (DPIM). The impact strength of specimens obtained by DPIM was found substantially increase at all the blends investigated, compared with the one obtained via conventional injection molding. Particularly, more than 30 kJ m−2 increase of the impact strength was observed for specimens with a higher rubber content (more than 15 wt%). SEM results showed a remarkably decrease of rubber particle size and more uniform dispersion of the dynamic molded specimens. This can be attributed to the shear induced reaction at the interface between polyamide 6 and EPDM-g-MA during the packing stage. The rubber particles were found stretched along the melt shear flow direction when it is content above 15 wt%. A master curve can be also constructed by plotting the impact strength versus the inter-particle distance, indicating that Wu's criterion still works for blends with stretched and oriented rubber particles when the crack propagation direction is perpendicular to the orientation direction of rubber particles. The observed higher impact strength in dynamic specimens could be due to, in part, the enhanced flexural stiffness, which will absorb more energy during impact process when the fracture of IZOD bars is incomplete, but more importantly due to the existence of the stretched and oriented rubber particles, which are more efficient in slowing the velocity of crack propagation and thus cause higher impact resistance when the fracture propagation direction is perpendicular to the rubber oriented direction.  相似文献   

20.
Abstract

Changes in rheological properties, morphology, and oil resistance in NR–NBR blends by viscosity ratio have been investigated. In this study, the viscosity ratio was modified by mechanical mastication and addition of liquid natural rubber (LNR) and epoxidised liquid natural rubber (ELNR). The results reveal that as viscosity ratio increased from 0·5 to 1·0, Mooney viscosity of the blends increased, and then decreased sharply as the viscosity ratio further increased from 1·0 to 2·0. The addition of LNR and ELNR for plasticising NR and NBR, respectively, does not significantly affect cure properties of the blends. The phase size of the NR dispersed phase depends strongly on the viscosity ratio. The high viscosity of the matrix and/or the low viscosity of the dispersed phase promote breaking up of the dispersed phase. Unexpectedly, a decrease in size of the dispersed phase by the modification of viscosity ratio via the use of low molecular weight rubber (i.e. LNR and ELNR) did not result in an improvement in oil resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号