首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The self-lubricating composites Ni3Al–BaF2–CaF2–Ag–Cr, which have varying fluoride contents, were fabricated by the powder metallurgy technique. The effect of fluoride content on the mechanical and tribological properties of the composites was investigated. The results showed that an optimal fluoride content and a balance between lubricity and mechanical strength were obtained. The Ni3Al–6.2BaF2–3.8CaF2–12.5Ag–10Cr composite showed the best friction coefficients (0.29–0.38) and wear rates (4.2 × 10−5–2.19 × 10−4 mm3 N−1 m−1) at a wide temperature range (room temperature to 800°C). Fluorides exhibited a good reduced friction performance at 400 and 600°C. However, at 800°C, the formation of BaCrO4 on the worn surface due to the tribo-chemical reaction at high temperatures provided an excellent lubricating property.  相似文献   

2.
The Ni3Al matrix composites with addition of 10, 15, and 20 wt% BaMoO4 were fabricated by powder metallurgy technique, and the tribological behaviors were studied from room temperature to 800 °C. It was found that BaAl2O4 formed during the fabrication process. The Ni3Al composites showed poor tribological property below 400 °C, with high friction coefficients (above 0.6) and wear rates (above 10−4 mm3/Nm). However, the composites exhibited excellent self-lubricating and anti-wear properties at higher temperatures, and the composite with addition of 15 wt% BaMoO4 had the lowest wear rate (1.10 × 10−5 mm3/Nm) and friction coefficient (0.26). In addition, the results also indicated that BaAl2O4 for the Ni3Al composites did not exhibit lubricating property from room temperature to 800 °C.  相似文献   

3.
Ni3Al–Ag–BaF2/CaF2–W composites were fabricated by the powder metallurgy route, and their tribological properties over a wide temperature range, starting from room temperature up to 800 °C, were investigated. The Ni3Al matrix composite with 15 wt% BaF2/CaF2 exhibited a favorable friction coefficient (range 0.3–0.4) and wear rate (0.2–6.2 × 10−4mm3 N−1 m−1). The formation of BaWO4 and CaWO4 with lubricity on the worn surface due to a tribo-chemical reaction at high temperatures provided excellent lubricating properties. The low friction coefficient over a broad temperature range could be attributed to the synergistic effect of Ag, BaF2/CaF2, BaWO4, and CaWO4.  相似文献   

4.
NiAl, NiAl–Cr–Mo alloy and NiAl matrix composites with addition of oxides (ZnO/CuO) were fabricated by powder metallurgy route. It was found that some new phases (such as NiZn3, Cu0.81Ni0.19 and Al2O3) are formed during the fabrication process due to a high-temperature solid state reaction. Tribological behavior was studied from room temperature to 1000 °C on an HT-1000 ball-on-disk high temperature tribometer. The results indicated that NiAl had high friction coefficient and wear rate at elevated temperatures, while incorporation of Cr(Mo) not only enhanced mechanical properties evidently but also improved high temperature tribological properties. Among the sintered materials, NiAl matrix composite with addition of ZnO showed the lowest wear rate at 1000 °C, while CuO addition into NiAl matrix composite exhibited the self-lubricating performance and the best tribological properties at 800 °C.  相似文献   

5.
The novel Ta2AlC–20 vol.% Ag (TaAg) and Cr2AlC–20 vol.% Ag (CrAg) composites were tribologically tested versus a Ni-based superalloy Inc718 (SA) by dry sliding at a sliding speed of 1 m/s at room temperature in air at loads from 3 N to 18 N. The TaAg composites were also tested at 8 and 18 N at 550 °C, and at a 3 N load against the SA with different surface roughnesses at 26 °C and 550 °C. At room temperatures, the coefficients of friction, μ’s, decreased from ~0.8–0.9 to ~0.3–0.4 for both the TaAg and CrAg composites as the applied normal force increased from 3 N to 8 N. Further increases in load to 18 N did not change the μ’s. The specific wear rates, sWR, increased with increased loads for the TaAg composite; they remained almost unchanged for the CrAg composite. This behavior was attributed to the formation of glaze tribofilms—similar to ones observed previously in these tribocouples at elevated temperatures and 3 N—promoted by the increased loads. Preconditioning of the SA surface by sliding against the TaAg composite at 550 °C and 8 N resulted in μ’s of <0.2 and sWR < 10−6 mm3/N-m in subsequent room temperature sliding at 3 N. Somewhat higher, but stable room temperature μ’s of ~0.3 and sWR of ~3 × 10−5 mm3/N-m were observed when the TaAg composites were slid versus a sandblasted SA surface at 500 °C and 3 N. It follows that in situ preconditioning of the tribo-surfaces is a powerful tool for improving the properties of the MAX/Ag-SA tribocouples. The relationship between sliding conditions, chemistries of tribofilms, and their properties are discussed.  相似文献   

6.
Fe–Mo-based self-lubricating composites were prepared by a powder metallurgical hot-pressing method. The tribological properties of Fe–Mo-based composites with varied CaF2 contents at high temperature were evaluated, and the effect of glaze films on the friction and wear characteristics of composites were analyzed. The results show that the introduction of CaF2 into Fe–Mo alloys improved the mechanical properties, and the best tribological properties of Fe–Mo–CaF2 composites were achieved at the CaF2 content of 8 wt% at both room temperature and 600 °C. The worn surface of Fe–Mo–CaF2 composite at 600 °C is characterized to plastic deformation and slight scuffing, and the improved tribological properties are attributed to the formation of lubricious glaze film that composed of high-temperature lubricants CaMoO4 and CaF2 on the worn surface of the composites.  相似文献   

7.
Self-lubricating ZrO2(Y2O3)–Al2O3–Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) composites have been fabricated by spark plasma sintering (SPS) method. The tribological properties have been evaluated using a high-temperature friction and wear tester at room temperature and 760 °C in dry sliding against alumina ball. The composites exhibit distinct improvements in effectively reducing friction and wear, as compared to the unmodified ZrO2(Y2O3)–Al2O3 ceramics. The ZrO2(Y2O3)–Al2O3–Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) composites have great low and stable friction coefficients of less than 0.15 and wear rates in the order of 10− 6mm3/Nm at 760 °C. Delamination is considered as the dominating wear mechanism of the composites at room temperature. At elevated temperature, the formation and effective spreading of Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) lubricating films during sliding play an important role in the reduction of the friction and wear.  相似文献   

8.
Tribological behaviors and the relevant mechanism of a highly pure polycrystalline bulk Ti3AlC2 sliding dryly against a low carbon steel disk were investigated. The tribological tests were carried out using a block-on-disk type high-speed friction tester, at the sliding speeds of 20–60 m/s under a normal pressure of 0.8 MPa. The results showed that the friction coefficient is as low as 0.1∼0.14 and the wear rate of Ti3AlC2 is only (2.3–2.5) × 10−6 mm3/Nm in the sliding speed range of 20–60 m/s. Such unusual friction and wear properties were confirmed to be dependant dominantly upon the presence of a frictional oxide film consisting of amorphous Ti, Al, and Fe oxides on the friction surfaces. The oxide film is in a fused state during the sliding friction at a fused temperature of 238–324 °C, so it takes a significant self-lubricating effect.  相似文献   

9.
The purpose of this study is to explore the effect of SiC reinforcement along with immiscible element addition in spray formed Al–Si base alloy. The investigation is done for four different compositions, i.e., Al–Si base alloy, Al–Si/SiC, Al–Si–5Sn/SiC and Al–Si–10Sn/SiC composite. The dry sliding wear properties of base alloy and composites were investigated against EN 31 steel at five different normal loads (14.7, 24.5, 34.3, 44.1 and 53.9 N). The tests were carried out in dry sliding conditions with a sliding speed of 1.6 ms−1 over pin-on-disc tribometer. Each composition is tested at four different temperatures 50, 75, 100 and 150 °C. To determine the wear mechanism, the worn surfaces of the samples were examined using scanning electron microscope (SEM). The composites emerge to be better wear resistant material than base alloy especially at higher loads. The optimum wear reduction was obtained in Al–Si–10Sn/SiC composite at all the different normal loads and temperatures.  相似文献   

10.
Jin  Ying  Kato  Koji  Umehara  Noritsugu 《Tribology Letters》1999,6(1):15-21
Ten kinds of self-lubricating composites with different amounts of sintering aids and solid lubricants in Al2O3 matrix were fabricated by hot-pressed sintering. Their friction and wear behaviours in unlubricated sliding against Al2O3 were tested by using a pin-on-disk wear tester at 650°C. It was shown that the amount of sintering aids strongly affected friction coefficient and wear rate of the Al2O3–20Ag20CaF2 composite, the appropriate amount of sintering aids was 10 wt% for beneficial effect on the reduction of wear at 650°C. Also it was shown that the addition of equal quantities of Ag and CaF2 in Al2O3 matrix can promote the formation of the well-covered lubricating film, and effectively reduce the friction and wear. The composite with 40 wt% of lubricants (20 wt% Ag, 20 wt% CaF2) presented an optimum tribological behavior at 650°C (friction coefficient μ is about 0.3, wear rates are about 4 x 10-6 mm3/N,m and 5 x 10-7 mm3/N,m for the disk and pin, respectively). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Previous studies on low temperature tribological investigations were limited to macro-scale studies because of the lack of suitable instrumentation. This limitation has been overcome using a newly developed low temperature nanoscratch tester capable of characterizing the scratch resistance of coatings down to −30 °C. The scratch resistance and mechanical properties of a functionally graded a-C:H(Ti)/TiCN/TiN/Ti coating have been investigated for temperatures ranging from 25 to −30 °C. It has been found that the a-C:H(Ti)/TiCN/TiN/Ti coating failed at high loads by cracking and spallation during the room-temperature scratch tests. Fractography suggests that these failures originate from or close to the interface between the top a-C:H(Ti) and the TiCN layers. Decreasing the test temperature from 25 to 0 °C resulted in increased values in H, H/E r and H 3 /E r2, consistent with improved crack- and wear resistances, with further smaller improvements being achieved on further decreasing the temperature to −30 °C.  相似文献   

12.
Nb1−x Al x N hard coatings were synthesised by cathodic arc-evaporation with different Al contents to study its influence on the tribological properties. Ball-on-disc tests at temperatures up to 700 °C were performed and the recorded coefficient of friction was generally in the range from 0.8 to 1.0. Subsequent analysis of the coating wear track and the counterpart wear scar by optical profilometry and Raman spectroscopy revealed details on the wear behaviour of the tested coatings. The best wear performance for the Nb-rich coatings was in the temperature range of 300–500 °C, whereas at the maximum testing temperature the higher oxidation resistance with increasing Al content was beneficial in terms of wear resistance.  相似文献   

13.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

14.
The tribological properties of Ni-17.5Si-29.3Cr alloy against Si3N4 were studied on a ball-on-disc tribotester between room temperature and 1000 °C. The effects of temperature on the tribological properties of the alloy were investigated. The worn surfaces of the alloy were examined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicated that the tribological behavior of the alloy expressed some differences with increase in testing temperature. At low and moderate temperatures (below 800 °C), the alloy showed excellent wear and oxidation resistances, and the wear rate of the alloy remained in the magnitude of 10?5 mm3/Nm; but at elevated temperature (800–1000 °C), the wear and oxidation resistances decreased, and the wear rate of the alloy increased up to 10?4 mm3/Nm. The friction coefficient decreased from 0.58 to 0.46 with the rising of testing temperature from 20 to 600 °C, and then remained nearly constant. The wear mechanism of the alloy was mainly fracture and delamination at low and moderate temperatures, and transformed to adhesive and oxidation at elevated temperatures.  相似文献   

15.
More durable, low-friction bearing materials over a wide temperature range are needed for turbine components and other high-temperature bearing applications. The current study reported the tribological properties of TiAl matrix self-lubricating composites (TMC) containing MoS2 (a low-temperature lubricant, below 500°C), hBN (a medium-temperature lubricant, below 600°C), and Ti3SiC2 (a high-temperature lubricant, above 600°C) designated as MhT against an Si3N4 counterface at temperatures ranging from 25 to 800°C in air. The load was 10 N and the sliding speed was 0.2 m/s for all tests. Tribological studies indicated that TMC containing MhT showed a lower friction coefficient and wear rate in comparison to TiAl-based alloy at all test temperatures, which was attributed to the excellent synergetic lubricating effect of MoS2, hBN, and Ti3SiC2. TMC containing 5 wt% MhT exhibited the best tribological properties over a wide temperature range.  相似文献   

16.
Studies to explore the nature of friction, and in particular thermally activated friction in macroscopic tribology, have lead to a series of experiments on thin coatings of molybdenum disulfide. Coatings of predominately molybdenum disulfide were selected for these experiments; five different coatings were used: MoS2/Ni, MoS2/Ti, MoS2/Sb2O3, MoS2/C/Sb2O3, and MoS2/Au/Sb2O3. The temperatures were varied over a range from −80 °C to 180 °C. The friction coefficients tended to increase with decreasing temperature. Activation energies were estimated to be between 2 and 10 kJ/mol from data fitting with an Arrhenius function. Subsequent room temperature wear rate measurements of these films under dry nitrogen conditions at ambient temperature demonstrated that the steady-state wear behavior of these coatings varied dramatically over a range of K = 7 × 10−6 to 2 × 10−8 mm3/(Nm). It was further shown that an inverse relationship between wear rate and the sensitivity of friction coefficient with temperature exists. The highest wear-rate coatings showed nearly athermal friction behavior, while the most wear resistant coatings showed thermally activated behavior. Finally, it is hypothesized that thermally activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to systems experiencing gross wear.  相似文献   

17.
It is a challenge to design self-lubricating materials that exhibit and maintain reduced friction coefficient as well as high strength over a wide range of temperatures. A high-temperature self-lubricating nickel-alloy-based composite was created using the hot pressing technique. The composite exhibited high relative density, and simultaneously superior lubricating properties, average friction coefficient below 0.25 from room temperature to 800 °C, and high strength, 470 MPa of tensile strength and 1500 MPa of compressive strength. The composite was very promising in high-temperature tribology.  相似文献   

18.
This study discusses a non-contact optical technique (electronic speckle pattern interferometry) that is well suited for thermal deformation measurement without any surface preparation and compensating process. Fiber reinforced plastics ([0]16, [0/90]8S) were analyzed by ESPI to determine their thermal expansion coefficients. The thermal expansion coefficient of the transverse direction of a uniaxial composite is evaluated as 48.78×10−6(1/°C). Also, the thermal expansion coefficient of the cross-ply laminate [0/90]8S is numerically estimated as 3.23×10−6 (1/°C) that is compared with that measured by ESPI.  相似文献   

19.
The rate of material removal during fixed abrasive lapping is a function of friction coefficient, the surface tension of the lubricant and of the substrate, and the contact angles between the interfaces. In this study, the authors measured the surface energies of materials typically found in thin film magnetic recording heads using contact angle measurements and the Lifshitz–van der Waals acid/base approach. The different materials tested were NixFey, Al2O3, and Al2O3-TiC. Sample preparation procedures were also considered. The chemical used to wash the surface was observed to affect the measured substrate surface energies. Surface energy values for samples washed with either acetone or hexane showed comparable results. The NixFey gave the highest measured surface energy (46.3–48.8 mJ m−2) followed by Al2O3 (44.1–45.3 mJ m−2) and Al2O3-TiC (43.3–45.3 mJ m−2). In contrast, the oil-washed samples measured generally lower surface energy values. The study characterized the interaction of two lubricant types against the three materials. The oil-based lubricant spreads completely on oil-washed samples mainly because of the low surface tension of the oil (22.0 mJ m−2) and did not show measurable contact angles. In comparison, the water-soluble lubricant ethylene glycol, due to its higher surface tension (48.0 mJ m−2), formed higher contact angles ranging from 47.2 to 59.6° on the different substrates.  相似文献   

20.
Woydt  Mathias 《Tribology Letters》2000,8(2-3):117-130
The results presented in this paper have clarified experimentally, that titania-based Magnéli-phases (Ti4O7/Ti5O9 and Ti6O11) with (121)-shear planes exhibit more anti-wear properties than lubricious (low-frictional) properties. The results for dry sliding indicate that the coefficients of friction lie in the range of 0.1–0.6 depending on sliding speed and ambient temperature. The COF decreased with increasing temperature (T= 22–800°C) and increasing sliding speed (υ= 1−6 m/s). The dry sliding wear rate was lowest for the Al2O3 at 1 m/s at 800°C with values of 1.7 × 10−8 and 6.4 × 10−8 mm3/N m, comparable to boundary/mixed lubrication, associated with a high dry frictional power loss of 30 W/mm2. The running-in wear length and, more important, the wear rate decreased under oscillating sliding tests with increasing relative humidity. The contact pressure for high-/low-wear transition increased under oscillating sliding tests with increasing relative humidity. At room temperature and a relative humidity of 100% the steady-state wear rate under dry oscillating sliding for the couple Al2O3/Ti4O7–Ti5O9 was lower than 2 × 10−7 mm3/N m and therefore inferior to the resolution of the continuous wear measurement sensor. TEM of wear tracks from oscillating sliding revealed at room temperature a work-hardening as mechanism to explain the running-in behavior and the high wear resistance. The hydroxylation of titania surfaces favours the high-/low-wear transition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号