共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
分级等温淬火球墨铸铁的组织与性能 总被引:8,自引:1,他引:8
研究了球铁经900℃奥氏体化后,在230℃(盐浴中)和25℃(油中)第一级等温淬火,325℃第二级(可控气氛炉中)等温淬火的组织与性能。发现经分级等温淬火后,球铁中贝氏体铁素体条束充分细化。230℃第一级等温淬火,时间在8~10min内,并经325℃×1.5h第二级等温淬火后,仍能获得细条束状的贝氏体组织。两种分级等温淬火工艺都能使球铁硬度达到HRC43,比325℃直接盐浴等温淬火提高5~6HRC。所以,分级等温是使球铁充分强化的有效手段,也为不用盐炉生产奥—贝球铁开劈了广阔的前景。 相似文献
3.
4.
贝氏体相变与等温淬火球铁 总被引:1,自引:0,他引:1
详细介绍了贝氏体相变的特征及其分类。指出不同化学成分和不同等温温度时贝氏体相变产物的组织形态不同,铁素体是贝氏体中不可缺少的组成部分,以及碳化物的存在与否不是判断贝氏体的必要依据。研究了等温淬火球铁的相变过程,指出了对等温淬火球铁组织命名的看法。 相似文献
5.
研究了等温淬火工艺对等温淬火球墨铸铁(ADI)组织、力学性能及磨损性能的影响。结果表明,在等温淬火温度290~380℃范围内,随着等温淬火温度的升高,ADI基体组织逐渐变粗,残留奥氏体量增多,硬度逐渐下降,ADI试样的磨损率增加,摩擦系数减小。研究可知,ADI磨损机制主要有微观切削磨损、氧化剥落磨损、犁沟和表面疲劳磨损。当等温淬火温度为较低时,290和320℃时ADI磨损机制主要为微观切削磨损和氧化剥落磨损;等温淬火温度为350℃时,ADI磨损机制主要为微观剥削磨损和犁沟,以及少量的氧化剥落磨损;等温淬火温度升高至380℃时,ADI的磨损机制主要为表面疲劳磨损和犁沟。 相似文献
6.
7.
8.
9.
未合金化和合金化球墨铸铁的试验表明,等温淬火球墨铸铁组织在室温下有转变的可能性。该转变取决于贝氏体的转变量,转变的最大值与贝氏体组织中的最大奥民体量相对应。业已表明,组织转变与未富碳奥氏体向马氏体转变有关。 相似文献
10.
用塑性变形和等温淬火提高球墨铸铁的性能 总被引:1,自引:0,他引:1
采用热压力加工方法生产各种球墨铸铁件,可减轻化学成分不均匀性,形成“球状+蠕虫状+流线型”石墨的三层组织结构。由于晶粒细化和再结晶结果,基体得到强化,提高了球墨铸铁的综合性能。等温淬火处理可进一步提高球墨铸铁的力学性能。 相似文献
11.
设计了低碳球铁的两组化学成分,通过金相、拉伸及硬度实验,分别研究了相同奥氏体化工艺(890℃×40 min)、不同等温淬火工艺对低碳球铁组织与力学性能的影响。实验发现,A组成分试样奥氏体化后,在340℃×60 min工艺下获得最好的力学性能(σb=1 103.98 MPa,δ=6.84%);B组成分试样在320℃×120 min工艺下获得最好的力学性能(σb=1 352.58MPa,δ=10.67%)。对比金相组织后发现,在最低温度等温淬火的B组成分试样组织最好。球化处理加二次孕育后,其球化级别及石墨球径级别提高、分布均匀。 相似文献
12.
An as-cast bainite ductile iron with excellent mechanical properties and wear resistance was fabricated by alloying and centrifugal casting method, and the alloyed chemical composition was optimized by using the thermodynamic software Thermo-Calc. By using optical microscopy, transmission electron microscopy, scanning electron microscopy, and X-ray diffraction, the microstructure of the as-fabricated bainite ductile cast iron was characterized pertinent to the elements distribution in matrix and features of ferrite and retained austenite. The results of mechanical properties test show that the hardness and compressive strength of this alloyed ductile iron are 52 HRC and 2,200 MPa, respectively. The as- cast bainite ductile iron possesses highly abrasive wear resistance and the reason can be ascribed to the solid solution of the elements Si, Ni, Cu, and Mn in the austenite and the formation of carbides of elements Cr and Mo. The strength of bainite ductile iron is increased by the acicular bainitic ferrite in the matrix. 相似文献
13.
An as-cast bainite ductile iron with excellent mechanical properties and wear resistance was fabricated by alloying and centrifugal casting method, and the alloyed chemical composition was optimized by using the thermodynamic software Thermo-Calc. By using optical microscopy, transmission electron microscopy, scanning electron microscopy, and X-ray diffraction, the microstructure of the as-fabricated bainite ductile cast iron was characterized pertinent to the elements distribution in matrix and features of ferrite and retained austenite. The results of mechanical properties test show that the hardness and compressive strength of this alloyed ductile iron are 52 HRC and 2,200 MPa, respectively. The ascast bainite ductile iron possesses highly abrasive wear resistance and the reason can be ascribed to the solid solution of the elements Si, Ni, Cu, and Mn in the austenite and the formation of carbides of elements Cr and Mo. The strength of bainite ductile iron is increased by the acicular bainitic ferrite in the matrix. 相似文献
14.
15.
16.
17.
18.
19.
采用新型分级淬火工艺生产高硅贝氏体球铁,将试样奥氏体化后,人常温介质中分级淬火,使球铁在230℃箱式电炉中等温转变成贝氏体组织,与传统的盐浴等温淬火贝氏体球铁进行比较。利用SEM、硬度计、冲击试验机等分析测试技术,对材料的微观组织和力学性能进行了研究。结果表明:采用分级淬火工艺生产高硅贝氏体球铁时,在Si含量大于3.3wt%时,对贝氏体相变具有显著的诱发作用,从而使贝氏体球铁组织细化,力学性能提高(52—56HRC、αK达12—15J/cm^2),并对此进行了理论分析。 相似文献