共查询到20条相似文献,搜索用时 15 毫秒
1.
The strength of piezoelectric ceramics is analyzed for a plate suddenly exposed to an environmental medium of different temperatures. The admissible temperature jump the material can sustain is studied using the stress- and fracture-toughness-based failure criteria. The critical parameters governing the level of the transient thermal stress in piezoelectric ceramics are identified. Solutions are obtained for the maximum thermal shock that the plate can sustain without failure, under the conditions that (i) maximum local tensile stress equals the tensile strength of the ceramic, and (ii) maximum stress intensity factor for representative pre-existing cracks equals the fracture toughness of the ceramic. 相似文献
2.
Takaaki Tsurumi Young-Bae Kil Kouhei Nagatoh Hirofumi Kakemoto Satoshi Wada Sadayuki Takahashi 《Journal of the American Ceramic Society》2002,85(8):1993-1996
The material coefficients of "soft" and "hard" lead zirconate titanate (PZT) ceramics were determined as complex values by the nonlinear least-squares-fitting of immittance data measured for length-extensional bar resonators. The piezoelectric d -constant should be a complex value to obtain a best fitting between observed and calculated results. Because the elastic, dielectric, and piezoelectric losses determined in this process were not "intrinsic" losses, a calculation process to evaluate the "intrinsic" losses was proposed. It was confirmed that the intrinsic losses were smaller than the corresponding extrinsic losses. The intrinsic piezoelectric loss existed in both soft and hard PZTs; ∼50% of the loss of piezoelectric d -constant was derived from the elastic and dielectric losses. The most notable difference between the soft and hard PZTs was observed in their elastic losses. 相似文献
3.
Cement-Based 0-3 Piezoelectric Composites 总被引:17,自引:0,他引:17
To meet the requirements of development for smart or intelligent structures in civil engineering, new functional materials that have good compatibility with civil engineering structural materials are needed. In this study, for the first time in the field of piezoelectric materials, cement-based 0-3 piezoelectric (PZT) composites were fabricated by the normal mixing and spreading method. The new materials have very good compatibility with portland cement concrete. The cement-based 0-3 piezoelectric composites were shown to have a slightly higher piezoelectric factor and electromechanical coefficient than those of 0-3 PZT/polymer composites with a similar content of PZT particles; thus, they are adequate for sensor application. There is potential for the application of cement-based 0-3 PZT composites in civil engineering because of their better piezoelectric properties and good compatibility with portland cement concrete. 相似文献
4.
Ken-ichi Kakimoto Hirofumi Kakemoto Shigetaka Fujita Yoichiro Masuda 《Journal of the American Ceramic Society》2002,85(4):1019-1021
PbZr0.53 Ti0.47 O3 (PZT) thin films with various preferred crystallographic orientations were synthesized on various substrates using pulsed laser deposition techniques. Larger piezoelectric displacement, which involved the bending vibration of the PZT film/substrate, was observed in randomly oriented PZT thin film than that in (100)- and (111)-preferred texture films. This result was discussed by correlation with the number of effective spontaneous polarization axes in the morphotropic phase boundary of the PZT system. Moreover, polarization fatigue was found to lower the electric-field-induced displacement significantly, indicating a large contribution of ferroelectric domain motion to the piezoelectric response of PZT thin films under bipolar drive. 相似文献
5.
Bárbara M. Fraygola Anand Chandrasekanar David Bahati Ulises Salazar Alberto Biancoli Nicola Marzari Dragan Damjanovic Nava Setter 《Journal of the American Ceramic Society》2017,100(5):1885-1895
Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O3 [PZT] ceramics. The origin of the donor‐dopant effects is not entirely clear. (Pb,Ba)ZrO3 [PBZ] is a related ferroelectric material, its perovskite A‐site being partially occupied by the larger Ba+2 cation, less prone to evaporation than Pb+2, and the B‐site is occupied entirely by the valency‐stable Zr+4. Here we report on our studies of Nb+5 doping effects in (Pb,Ba)ZrO3. Similarly, to past observations on La+3 and Nb+5 doped PZT, we find a strong reduction in relative density of PBZ when the doping is <0.5 atomic %. This is accompanied by lattice parameter reduction, enhanced PbO loss, smaller grain size and deterioration of dielectric, piezoelectric and polarization switching properties, the latter being opposite of expected softening effect. All those observations can be interpreted in terms of the Nb entering A‐site at small concentrations. This is supported by ab‐inito calculations and analysis of the possible defect reaction equations. The structure and microstructure of PBZ with Nb>0.2% are consistent with Nb+5 entering the B‐site and softening effects are observed. The study supports the scenario of hardening due to domain walls pinning by VPb‐VO divacancies and softening upon decrease in their concentration. 相似文献
6.
Jing-Feng Li Kenta Takagi Masaru Ono Wei Pan Ryuzo Watanabe Abdulhakim Almajid Minoru Taya 《Journal of the American Ceramic Society》2003,86(7):1094-1098
Porous ceramics of lead zirconate titanate (PZT) were prepared by sintering powder compacts consisting of PZT and stearic acid powders in an air atmosphere; stearic acid was added as a pore-forming agent (PFA). The dielectric, elastic and piezoelectric properties of uniformly porous PZT ceramics were investigated as a function of the porosity volume fraction. Furthermore, a beam-shaped PZT actuator sample with a graded porosity content across its thickness was fabricated by sintering PFA-graded powder compacts. The electric-field-induced bending displacement characteristics of the actuator samples were measured by using strain gauges and were found to be in good agreement with the theoretical predication based on a classical lamination theory. 相似文献
7.
High-durability lead zirconate titanate (PZT) ceramics were developed in the present study to prevent time-dependent deterioration of displacement, as well as failure under operation. Current leakage in PZT was decreased by adding elemental manganese, changing the zirconium content from 54.0 to 54.2 mol%, and decreasing the antimony content. Displacement was improved by adding both manganese and indium to the PZT. The present investigation resulted in the development of PZT compositions with high displacement and low time-dependent displacement degradation. These results were confirmed by analyzing stack actuators made from enhanced PZT compositions. 相似文献
8.
Fabrication of Piezoelectric Ceramic/Polymer Composite Transducers Using Fused Deposition of Ceramics 总被引:2,自引:0,他引:2
Gwenaëlle M. Lous Iván A. Cornejo Thomas F. McNulty Ahmad Safari Stephen C. Danforth 《Journal of the American Ceramic Society》2000,83(1):124-28
The fused deposition of ceramics (FDC) technique was used to fabricate piezoelectric ceramic skeletons for the development of piezoelectric composite transducers with 2–2 connectivity for medical imaging. The green parts were designed to have 30 vol% lead zirconate titanate ceramic (PZT-5H) in the final composites. Physical characterization of the sintered samples revealed that 96% of the theoretical density was achieved. Optical microscopy showed that defects due to the FDC mode of deposition, such as small roads and bubbles, were eliminated, because of improvements in powder processing. The electromechanical properties of the final composites were similar to the properties that were obtained for conventionally made composites. A matching layer and a backing layer, as well as wires and an inductor, were added to each FDC composite to fabricate a functional medical imaging transducer. The devices were tested in water using a steel target 3.5 cm thick. Echoes from the target could be detected with all the transducers that were fabricated using FDC. The sensitivities of the transducers were similar to that of a commercial transducer. However, the ringing was much longer than that for a commercial transducer, because the backing layer was not optimized in the transducers that were fabricated using FDC. 相似文献
9.
Katy S. Gerace John C. Mauro Clive A. Randall 《Journal of the American Ceramic Society》2021,104(5):1915-1944
Piezoelectric materials have coupled mechanical and electrical energies and have long been used in devices for actuators, sensors, energy harvesters, frequency filters, and various additional applications. Piezoelectricity requires a non-centrosymmetric crystal structure and is therefore confined to materials that possess a periodic crystalline structure. Due to the non-crystalline nature of glass, piezoelectricity is fundamentally forbidden. However, one way to exploit piezoelectric properties in a glassy matrix is by developing glass-ceramics that possess controlled growth of a crystalline phase. Growth and orientation of piezoelectric crystals in a glassy matrix is a non-trivial process that has long been explored to combine the formability of glass with the thermal and mechanical resilience of glass-ceramics. While extensive work has been done in the field of functional glass-ceramics, the results are presented in isolated articles and a comprehensive review pertaining to symmetry breaking methods to exploit anisotropic properties in glass-ceramics has been absent from the literature. Here, we present a global review of the fundamental symmetry requirements for piezoelectricity, the development of polar, piezoelectric glass-ceramic compositions (specifically those with LiNbO3 and fresnoite-based crystal phases), and various crystal growth and orientation mechanisms, including relevant kinetic and thermodynamic driving forces. Lastly, we discuss the challenges associated with implementing gradients to drive oriented crystal growth to develop non-centrosymmetry, and the need for future modeling work to produce adequate time-temperature-transformation (TTT) diagrams that take into account kinetic and thermodynamic driving forces for oriented crystal growth. Going beyond technical challenges, we conclude with an examination of current and potential applications for piezoelectric glass-ceramics that combine the formability of glass with the symmetry-dependent properties of ceramics. 相似文献
10.
Miguel Algueró Carlos Alemany Lorena Pardo Amador M. González 《Journal of the American Ceramic Society》2004,87(2):209-215
A method based on the use of four piezoelectric resonances for three sample geometries is presented that allows one to obtain all the dielectric permittivities, compliances, and piezoelectric coefficients of a piezoelectric ceramic in complex form and, therefore, all related losses. Piezoelectric losses are responsible for heat generation and hysteresis in actuators. The method is applied to a Navy type II PZT-based piezoelectric ceramic (PZT = lead zirconate titanate), for which the full set of linear electric, mechanical, and electromechanical coefficients is given in complex form. Full sets of coefficients for the available piezoceramics are required for exploiting all the possibilities of finite element analysis, both in fundamental research (mechanisms of degradation) and in development (element design). This numerical technique is necessary to explore arbitrary shapes provided by solid free-form-fabrication technologies. 相似文献
11.
Daniel J. Lewis Devendra Gupta Michael R. Notis Yoshihiko Imanaka 《Journal of the American Ceramic Society》2001,84(8):1777-1784
We have conducted diffusion measurements of radioactive 110m Ag tracer in single-crystal PbMgNbO3 –PbTiO3 (PMN-PT) and in polycrystalline 50Pb(Ni1/3 Nb2/3 )O3 ·35PbTiO3 ·15PbZrO3 (PNN-PT-PZ) piezoelectric ceramics. Both materials measured belong to the perovskite family. Diffusion in PMN-PT is characterized by an activation energy of 277 kJ/mol and pre-exponential factor of 0.0034 m2 /s and compares well with cation diffusion in high-temperature superconducting YBa2 Cu3 O7–δ . Diffusion in polycrystalline PNN-PT-PZ, on the other hand, is many orders of magnitude faster and is attributed to grain boundaries. PNN-PT-PZ has a lower activation energy, 168 kJ/mol, and a combined pre-exponential factor ( s δ( D b )o , where s is the segregation factor of silver, δ the thickness, and ( D b )o the pre-exponential factor for grain boundaries) of 3.7 × 10−9 m3 /s. The unusually large combined pre-exponential factor infers large segregation of silver at the grain boundaries and small solid solubility within the grains. It is possible, using a semiempirical model, to compute metal– (silver–) ceramic interface energies as a function of temperature, from which values of 90 kJ/mol and 0.9 R are obtained for enthalpy and entropy, respectively, for grain-boundary segregation. 相似文献
12.
Jun Gao Do‐Kyun Kwon Steven Perini Jeffery Long Shihai Zhang Michael T. Lanagan 《Journal of the American Ceramic Society》2016,99(12):4045-4049
Thin and flexible glass ribbons can be rolled into a film capacitor structures for power electronic circuits. Glass has excellent electrical properties and is a leading candidate to replace polymer films for high‐temperature applications. The dielectric properties of a low‐alkali aluminoborosilicate glass were characterized up to temperatures of 400°C. Low‐field permittivity values of 6 with dielectric loss below 0.01 were found for temperatures below 300°C. The dielectric breakdown strength exceeded 5 MV/cm for temperature of 400°C and high‐field polarization measurements showed that glass has over 95% energy efficiency at temperatures of 200°C, which is a target temperature for high‐temperature power electronic circuits driven by wide bandgap semiconductor devices. 相似文献
13.
Tadashi Takenaka Amar S. Bhalla L. Eric Cross Koichiro Sakata 《Journal of the American Ceramic Society》1989,72(6):1016-1023
New piezoelectric and pyroelectric ceramics consisting of antiferroelectric lead zirconate (PZ) and relaxor ferroelectric lead zinc niobate (PZN) are studied from an application view-point of the field-induced antiferroelectric-to-ferroelectric phase transition. An antiferroelectric-ferroelectric phase boundary exists in PbZrx (Zn1/3 Nb2/3 )1−x O3 (PZZN-1000x) close to x = 0.93 to 0.94 at room temperature. A new ferroelectric rhombohedral phase change, Fα –F'α , at low temperature is found and studied by the temperature dependence of the pyroelectric coefficient. Electrical poling in these ceramics is easy, and the coercive field Ec ∼8 to kV/cm is rather low. Samples with compositions in the range PZZN-86 to PZZN-92 have a large electromechanical coupling constant, k (kt and k15 ∼50% to 60%), and a low dielectric constant, ɛs (ɛT 33 /ɛ0 = 260 to 320, ɛT 11 /ɛ0 = 380). PZZN ceramics appear to be potential candidates for high-frequency ultrasonic transducers used in the thickness shear mode. The pyroelectric figure of merit (Fv ) of these ceramics is comparable to the values published for the PZT-based or PbTiO3 -based materials. 相似文献
14.
Hong Zheng Ian M. Reaney William E. Lee N. Jones Howard Thomas 《Journal of the American Ceramic Society》2002,85(9):2337-2344
(Pb1−x−ySrxBay)(Zr0.976−zTizNb0.024)O3 solid solutions have been investigated to understand the relationship between structural changes caused by isovalent strontium and barium substitution on the A-site and dielectric and piezoelectric properties. As strontium and barium were substituted for lead, the zirconium:titanium (Zr:Ti) ratio was modified so that all compositions had an optimized piezoelectric coefficient (d33). The value of d33 was at a maximum in the tetragonal phase near, but not at, the morphotropic-phase boundary (MPB). The real MPB was taken as the Zr:Ti ratio at which X-ray diffraction patterns appeared either pseudocubic or a mixture of rhombohedral and tetragonal. As strontium content increased, optimized d33 also increased from 410 pC/N (x= 0) to 640 pC/N (x= 0.12), commensurate with a decrease in the paraelectric-to-ferroelectric phase transition temperature (TC) from 350°C (x= 0) to 175°C (x= 0.12). However, for ceramics where x > 0.12, optimized d33 decreased even though the phase-transition temperature was ∼150°C. Low strontium concentration ceramics (x= 0–0.08) contained 80 nm ferrroelectric domains typical of PZT, but high strontium concentration ceramics (x= 0.12–0.16) contained fine-scale domains (20 nm) in some regions of the microstructure. In addition, [110] pseudocubic electron diffraction patterns revealed superlattice reflections at 1/2{hkl} positions associated with rotations of the octahedra in antiphase. Co-doping ceramics with strontium (x= 0.06) and barium (y= 0.06) resulted in the disappearance of the 1/2{hkl} reflections. Optimized d33 (∼520 pC/N, TC∼ 205°C) for this composition was similar to that of ceramics where x= 0.08, y= 0, which had a TC of ∼250°C. 相似文献
15.
Jong‐Hyun Kim Dae‐Hyeon Kim Tae‐Ho Lee Tae‐Gon Lee Ji‐Hyun Lee Bo‐Yun Kim Sahn Nahm Chong‐Yun Kang Jungho Ryu 《Journal of the American Ceramic Society》2016,99(12):4031-4038
K(Nb1?xMnx)O3 (KN1?xMx) ceramics with 0.005 ≤ x ≤ 0.015 were sintered at 1020°C through a normal sintering process without the formation of a liquid phase. They exhibited double polarization versus electric field (P–E) hysteresis and sprout‐shaped strain versus electric field (S–E) curves owing to the presence of a defect dipole (PD), which was formed between the acceptor Mn3+ ion and the oxygen vacancy. Moreover, the aging process was not required to develop the PD. The KN1?xMx ceramics exhibited a large strain of ~0.2% at 6.0 kV/mm. For the KN0.985M0.015 ceramic, this large strain was maintained after 104 cycles of an electric field of 6.0 kV/mm. This ceramic also maintained a double hysteresis curve at 200°C. Therefore, the KN0.985M0.015 ceramic has a large electric field‐induced strain, along with good thermal and fatigue properties for multilayer piezoelectric actuators. 相似文献
16.
High Piezoelectric Voltage Coefficient in Structured Lead‐Free (K,Na,Li)NbO3 Particulate—Epoxy Composites 下载免费PDF全文
Nijesh K. James Daniella B. Deutz Ranjita K. Bose Sybrand van der Zwaag Pim Groen 《Journal of the American Ceramic Society》2016,99(12):3957-3963
A high‐voltage coefficient has been found in lead‐free piezoelectric particulate composites based on epoxy with lead‐free (K0.50Na0.50)0.94Li0.06NbO3 (KNLN) piezoceramic particles with a natural cubic morphology. The KNLN powder used in the composites has been prepared using a new solid‐state double calcination processing route. These particles were subsequently used to create random and structured KNLN‐epoxy composites. Using dielectrophoresis, these natural cubical KNLN particles were structured into one‐dimensional chains inside the epoxy matrix. Composites produced with these powders showed piezoelectric properties about a factor of 2 higher than those of composites processed with conventionally calcined KNLN powders. The dielectrophoretically structured KNLN‐epoxy composites with optimized particle size and morphology showed excellent piezoelectric properties, which can replace lead containing piezoelectric composites for sensor and energy harvesting applications in future. 相似文献
17.
压电陶瓷PZN-PZT对压电复合材料性能的影响 总被引:1,自引:0,他引:1
本研究采用固相烧结法合成了PZN-PZT压电陶瓷粉体,并用XRD分析了其晶相组成。将PZN-PZT陶瓷粉体与PVDF复合,制备出PZN-PZT/PVDF0-3型压电复合材料,研究了陶瓷质量分数对复合材料铁电性、介电性及压电性的影响。结果表明,复合材料的铁电性、介电性和压电性能随陶瓷含量的增加而增强,当陶瓷含量为90%时,复合材料的剩余极化强度Pr达到5.27μC·cm-2,矫顽场EC为76kV·cm-1,介电常数εr为188,介电损耗tanδ为0.065,压电常数d33则达到33.4pC/N。 相似文献
18.
Surface Analysis and Treatment of Extruded Fluoride Phosphate Glass Preforms for Optical Fiber Fabrication 下载免费PDF全文
Christopher A. G. Kalnins Nigel A. Spooner Tanya M. Monro Heike Ebendorff‐Heidepriem 《Journal of the American Ceramic Society》2016,99(6):1874-1877
Fabrication of fluoride phosphate glass optical fibers using the extrusion method for preform fabrication has been studied using the commercial Schott N‐FK51A glass. The extrusion step was found to create a surface layer of differing composition from the bulk glass material, leading to defects drawn down onto the optical fiber surface during fiber fabrication, resulting in high loss and fragile fibers. Similar phenomena have also been observed in other fluoride‐based glasses. Removal of this surface layer from preforms prior to fiber drawing was shown to improve optical fiber loss from >5 dB/m to 0.5–1.0 dB/m. The removal of this surface layer is therefore necessary to produce low‐loss fluoride phosphate optical fibers. 相似文献
19.
Miguel Algueró Jesús Ricote Alicia Castro 《Journal of the American Ceramic Society》2004,87(5):772-778
The mechanosynthesis of piezoelectric perovskite 0.92Pb(Zn1/3 Nb2/3 )O3 –0.08PbTiO3 (PZN–PT) by direct mechanochemical activation of the constituent oxides has been studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). This and the PbO flux method are the only two procedures that have succeeded in synthesizing this phase, which has recently been shown to present very high electromechanical response. The thermal stability of the single perovskite phase powders has been studied by differential thermal analysis/thermogravimetry and by high-temperature XRD as a function of mechanical activation time and pressure. The phase was found to transform into a pyrochlore type structure at temperatures above 400°C. The transformation presented a significant time dependence, and it was slowed down by increasing mechanical activation time and by the application of pressures by hot pressing. Sintering experiments were accomplished and 85% density, 77% perovskite-phase ceramics were obtained after heating at 1000°C for 1 h. Hot pressing at this temperature failed to increase the percentage of perovskite phase. Results are discussed, and procedures for obtaining dense single-phase PZN–PT-based ceramics with ultrahigh piezoelectricity are proposed. 相似文献
20.
Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation 下载免费PDF全文
Jing Cao Bertrand Poumellec Léo Mazerolles François Brisset Anne‐Laure Helbert Suzy Surble Xuan He Matthieu Lancry 《Journal of the American Ceramic Society》2017,100(1):115-124
Understanding the phase transformation in glass and the morphology of related nanostructure after femtosecond laser irradiation is of great importance for fabricating functional optics, in which glass crystallization is involved to obtain nonlinear optical properties. We report on the crystallization inside lithium niobium silicate glass induced by fs laser irradiation. Energy‐dispersive X‐ray spectroscopy coupled to scanning transmission electron microscopy (STEM/EDS) and transmission electron microscopy confirm a nanoscale phase separation whereby LiNbO3 crystals are embedded in lamella‐shaped frames of amorphous SiO2. The obtained nanostructure may have applications in fabricating second‐order nonlinear optical devices. 相似文献