首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of ceramic oxide coatings on silicon nitride is one method to improve its alkali corrosion resistance. Four oxide coatings, including (Ca0.6, Mg0.4) Zr4(PO4)6 (CMZP), zirconia, mullite and alumina, were examined. These coatings were applied on Si3N4 using both sol–gel and dip coating techniques. The coated and uncoated samples were exposed to sodium molten-salt and sodium-containing atmospheres at 1000 °C for 50 h. The weight loss of all the coated samples was less than that of the uncoated Si3N4 with CMZP-coated samples exhibiting the smallest weight loss. There was no decrease in the flexural strength of Si3N4 after coating with zirconia and CMZP, and a decrease in strength after coating with either mullite or alumina. After alkali exposure, the strength of the CMZP and zirconia coated samples were significantly higher than those of the mullite-coated, alumina-coated, and uncoated Si3N4. The observed behaviour is explained in terms of the microstructure and protection mechanisms. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
The single phase compound Ca0.5Zr2P3O12 (CZP) was prepared by solid state reaction technique. This material shows a negative thermal expansion in the temperature region of 30°–500°C. The effect of MgO and ZnO addition on the sintering behavior and thermal expansion characteristics of Ca0.5Zr2P3O12 was investigated. Mg3(PO4)2 and Zn3(PO4)2 were observed as minor phases responsible for improving the overall thermal expansion of CZP + MgO, ZnO systems. SEM studies and density data are also discussed. Observed sintering kinetics suggest that a liquid phase is promoting the sintering reaction. 98+% of theoretical density and near zero expansion behavior in certain compositions were observed.  相似文献   

3.
(NH4)Zr2(PO4)3 has been prepared, hydrothermally, from α-zirconium phosphate in three different ways; (1) from amine intercalates at 300°C, (2) from mixtures of ZrOCl2·8H2O in excess (NH4)H2PO4 and (3) reaction of NH4Cl with Zr(NaPO4)2. Ammonium dizirconium triphosphate is rhombohedral with a = 8.676(1) and c = 24.288(5)A?. It decomposed on heating to HZr2(PO4)3. Below 600°C a complex, as yet unindexed, X-ray pattern was obtained. A very similar X-ray pattern was obtained by washing LiTi0.1Zr1.9(PO4)3 with 0.3N HCl. Heating this phase or NH4Zr2(PO4)3, above 600°C resulted in the appearance of a rhombohedral phase of HZr2(PO4)3 with cell dimensions a = 8.803(5) and c = 23.23(1)A?. The protons were not completely removed until about 1150°C. Decomposition of (NH4)Zr2(PO4)3 at 450°C yielded an acidic gas whereas at 700°C NH3 was evolved. A possible explanation for this behavior is presented.  相似文献   

4.
AgCaCdMg2(PO4)3 and AgCd2Mg2(PO4)3, two new compounds with the alluaudite-type structure, were synthesized by a solid state reaction in air at 750 °C. The X-ray powder diffraction pattern of AgCaCdMg2(PO4)3 indicates the presence of small amounts of (Ca, Mg)3(PO4)2 with the whitlockite structure, as impurity, whereas AgCd2Mg2(PO4)3 is constituted by pure alluaudite. The Rietveld refinements of the X-ray powder diffraction patterns indicate an ordered cationic distribution for AgCd2Mg2(PO4)3, with Ag on A(2)′, Cd on A(1) and M(1), and Mg on M(2), whereas a disordered distribution of Cd and Ca between the A(1) and M(1) sites is observed for AgCaCdMg2(PO4)3. The catalytic properties of these compounds has been measured in reaction of butan-2-ol dehydrogenation. In the absence of oxygen, both samples exhibit poor dehydrogenation activity. All samples displayed no dehydration activity. Introduction of oxygen into the feed changed totally the catalytic behavior of the catalysts. The production of methyl ethyl ketone increases with time on stream and the reaction temperature. AgCaCdMg2(PO4)3 is more efficient than AgCd2Mg2(PO4)3.  相似文献   

5.
The compound HZr2(PO4)3 was converted to (H3O)Zr2(PO4)3 by refluxing in water for 12 or more hours. The water is lost above 150°C to regenerate the original triphosphate. The hydronium ion phase is rhombohedral with hexagonal axes of a = 8.760(1) and c = 23.774(4)A?. Proton conduction in these compounds was investigated by an ac impedance method over the frequency range 5Hz – 10MHz. The activation energy for (H3O)Zr2(PO4)3 in the temperature range of 25 to 150°C was 0.56eV while the corresponding value for HZr2(PO4)3 (125 – 300°C) was 0.44eV.  相似文献   

6.
The influence of Ca0.8Sr0.2TiO3 on the microstructures and microwave dielectric properties of Nd(Mg0.4Zn0.1Sn0.5)O3 ceramics were investigated by the conventional solid-state method. The X-ray diffraction peaks of (1 − x)Nd(Mg0.4Zn0.1Sn0.5)O3xCa0.8Sr0.2TiO3 ceramic system shifted to higher angles as x increased. The dielectric constant increased from 31.8 to 47.7, the quality factor (Q × f) decreased from 54,200 to 42,800 GHz, and the temperature coefficient of resonant frequency (τ f ) increased from −43 to +41 ppm/°C as x increased from 0.5 to 0.7 when (1 − x)Nd(Mg0.4Zn0.1Sn0.5)O3xCa0.8Sr0.2TiO3 ceramic system sintered at 1,600 °C for 4 h.  相似文献   

7.
Jiaping Huang 《Materials Letters》2010,64(21):2334-2336
Eu3+-doped Ca3Y0.8Gd0.2(VO4)2.4(PO4)0.6 nanophosphors have been prepared by modified solid-state reaction. X-ray powder diffraction, transmission electron microscopy (TEM), photoluminescence excitation and emission spectra were used to characterize the resulting samples. X-ray powder diffraction (XRD) analysis confirmed the formation of YVO4. Photoluminescence (PL) results showed that the phosphor could be efficiently excited by UV-visible light from 350 to 550 nm, exhibiting bright orange-red emission(excited by 397) and red emission(excited by 467), which has potential application as a phosphor for UV and blue GaN-based light-emitting diodes (LEDs). TEM images show that the grain size of Ca3Y0.45Eu0.35Gd0.2(VO4)2.4(PO4)0.6 is about 39 nm, which is in full agreement with the theoretical calculation data from the XRD patterns.  相似文献   

8.
Phase-pure polycrystalline fluorapatites with the general formula Ca10−x M x (PO4)6F2:Eu3+(M = Pb, Mg) have been prepared by precipitation from aqueous solutions, and the effects of the Pb2+ and Mg2+ ions, differing markedly in ionic radius, on the structure, morphology, and luminescence spectra of the fluorapatites have been investigated. The Pb2+ and Mg2+ contents are shown to influence the Eu3+ distribution over inequivalent sites in the crystal structure of Ca10−x M x (PO4)6F2. Original Russian Text ? N.V. Babayevskaya, Yu.N. Savvin, A.V. Tolmachev, 2007, published in Neorganicheskie Materialy, 2007, Vol. 43, No. 8, pp. 976–980.  相似文献   

9.
Ca 4 Mg 5 (PO 4 ) 6 :Eu2+^{\boldsymbol{2+}} blue-emitting phosphor was synthesized by the combustion-assisted synthesis method under reductive atmosphere. The products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectrum. XRD analysis confirmed the formation of Ca 4 Mg 5 (PO 4 ) 6 pure phase. Photoluminescence results showed that the phosphor can be excited efficiently by UV light range from 230–400 nm, and then exhibited bright blue light with peak wavelength at 431 nm. It is a very promising candidate as a blue-emitting phosphor for potential applications in display devices.  相似文献   

10.
In this work, the piezoelectric ceramic system of Pb[(Zr1−xTix)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3, 0.47≤x≤0.57, with composition close to the morphotropic phase boundary, was studied. From the results of X-ray diffraction and piezoelectric measurement, ceramics near x=0.51 were found at the morphotropic phase boundary (MPB) between the tetragonal and pseudocubic perovskite. The planar coupling factor (kp=0.72) is high at compositions near the MPB, but the mechanical quality factor (Qm=75) is low. The calculation of the diffuseness of phase transition shows that the region of phase coexistence of this system is broader than that of the ternary system.  相似文献   

11.
Approximate homogeneity ranges at about 1073 K have been determined for some (Mg,Me)3(PO4)2 solid solutions. X-ray powder diffraction data are given and the observed changes in unit cell dimensions are discussed. The Mg3(PO4)2 structure, isotypic with γ-Zn3(PO4)2, contains five- and six-coordinated cation sites, M1 and M2 respectively. The M1 site preference order is Zn2+ > Co2+ > Fe2+ > Mg2+ > Mn2+.  相似文献   

12.
2-6 mol% ZrO2 was added to a base glass composition of P2O5 31.25, CaO 43.75, TiO2 25 (mol%) at the expense of TiO2. The prepared glasses were crystallized to bulk glass ceramics containing the major phases of β-Ca3(PO4)2 and CaTi4(PO4)6. DTA was utilized to determine the appropriate phase separation-nucleation and crystallization temperatures. The crystalline products and resulting microstructures were examined by XRD and SEM. The β-Ca3(PO4)2 phase was dissolved out by leaching the resulting glass ceramics in HCl, leaving a porous skeleton of CaTi4(PO4)6. It was shown that ZrO2 addition resulted in reduction of volume porosity and mean pore diameter while the specific surface area was increased. The smallest median pore diameter and largest surface area were 8.6 nm and 32 m2 g−1 respectively obtained for the specimen containing 6 mol% ZrO2. The ZrO2 addition also improved the chemical durability and bending strength of porous glass ceramics.  相似文献   

13.
A low thermal expansion ceramic with a very low thermal expansion anisotropy was synthesized from the Sr0.5Zr2(PO4)3 system. The sintering was promoted by addition of MgO, and the solgel technique also improved the sinterability. The thermal expansion of the crystal was lowered by substituting Nb5+ for Zr4+ and 1/2Sr2+ pairs, becoming near-zero for Sr0.25Nb0.5Zr1.5(PO4)3. All dense ceramics in this system had a strength of about 80 MPa, and did not suffer microcracking even in the coarse-grained polycrystalline ceramics, owing to the very low thermal expansion anisotropy of the crystals.  相似文献   

14.
Low-temperature sintering and properties of low temperature co-fired ceramics materials based on a typical Ca–Al–B–Si–O glass and various ceramic fillers such as (Zr0.8Sn0.2)TiO4, (Ca0.5Mg0.5)TiO3, BaSm2Ti4O12 and CaTiO3 were investigated. Densification, crystallization and dielectric properties are found to strongly depend on the type of filler. The densification process of glass/ceramic composites with different ceramic fillers is mainly from 600 to 925 °C, and the initial compacting temperature of samples is 600 °C. The initial rapid densification of samples starts after glass softening temperature of samples. The XRD patterns of (Ca0.5Mg0.5)TiO3 and CaTiO3 samples demonstrate crystalline phases, CaTiO(SiO4) and CaTiSiO5, respectively, as a result of firing at 875 °C for 15 min. The high dielectric constant fillers produce high εr values of the dielectric samples. The maximum dielectric constant of samples for (Zr0.8Sn0.2)TiO4, (Ca0.5Mg0.5)TiO3, BaSm2Ti4O12 and CaTiO3 filler is 14.02, 16.21, 18.64 and 23.78, respectively. Comparing with other samples, the specimens for (Ca0.5Mg0.5)TiO3 and CaTiO3 ceramic filler have lower dielectric loss. Especially, the sample for (Ca0.5Mg0.5)TiO3 filler exhibits the lowest dielectric loss of 0.00011.  相似文献   

15.
A SnO_2-doped calcium phosphate(Ca-P-Sn) coating was constructed on Mg-1 Li-1 Ca alloy by a hydrothermal process. The fabricated functional coatings were investigated using scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). A triple-layered structure, which is composed of Ca_3(PO_4)_2,(Ca, Mg)_3(PO_4)_2, SnO_2, and MgHPO_4·3 H_2O, is evident and leads to the formation of Ca_(10)(PO_4)_6(OH)_2 in Hank's solution. Electrochemical measurements, hydrogen evolution tests and plating counts reveal that the corrosion resistance and antibacterial activity were improved through the coating treatment. The embedded SnO_2 nanoparticles enhanced crystallisation of the coating.The formation and degradation mechanisms of the coating were discussed.  相似文献   

16.
The effects of ZnO addition on the microstructures and microwave dielectric properties of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics were investigated. ZnO was selected as liquid phase sintering aids to lower the sintering temperature of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics. With ZnO additives, the densification temperature of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 can be effectively reduced from 1450 to 1200–1325 °C. The crystalline phase exhibited no phase difference at low addition levels (0.25–2 wt.%). It is found that low-level doping of ZnO (0.25–2 wt.%) can significantly improve the density and dielectric properties of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics. The quality factors Q × f were strongly dependent upon the amount of additives. Q × f values of 36 000 and 13 000 GHz could be obtained at 1200–1325 °C with 1 and 2 wt.% ZnO additives, respectively. During all additives ranges, the relative dielectric constants were significantly different and ranged from 23.1 to 27.96. The temperature coefficient varies from 14.1–24.3 ppm/°C.  相似文献   

17.
通过三种优化工艺体系在Mg--5%Li合金表面上生长陶瓷膜层, 分析了膜层的厚度、显微结构、相组成和耐蚀性. 结果表明, 三种膜层都含有MgO相, 微弧氧化试样的耐蚀性能都明显提高. 使用Na3PO4体系制备的膜层含有MgF2, 膜层最厚、表面有大量裂纹; 使用Na2SiO3体系制备的膜层含有橄榄石型Mg2SiO4, 耐点蚀性能最好; 使用Na2SiO3--Na3PO4体系制备的膜层含有MgSiO3, 致密性最好, 膜层耐均匀腐蚀性能最好.  相似文献   

18.
Phosphates Am1/3[Zr2(PO4)3] and Pu1/4[Zr2(PO4)3] were synthesized and studied by X-ray diffraction. The X-ray patterns were indexed in trigonal crystal system, and the unit cell parameters were evaluated. The possibility of accommodation of actinides in the framework cavities of the structure of sodium zirconium phosphate was demonstrated for the first time. It was suggested that incorporation of highly charged Pu and Am cations in the framework cavities decreases the symmetry of the crystal structure to simple trigonal. The rates of Pu leaching from a ceramic material based on phosphate Pu1/4[Zr2(PO4)3] were measured.  相似文献   

19.
Ceramic materials based on Ca0.5Zr2(PO4)3 and NaFeNb(PO4)3, structural analogs of NaZr2(PO4)3 (NZP), were prepared by spark plasma sintering. At sintering temperatures of 1100–1200 and 880°C and sintering times of 12 and 3 min, the relative densities reached were 99.1 and 99.9%, respectively. According to X-ray diffraction data, the sintering process caused no changes in phase composition. The ceramics had a dense, homogeneous microstructure and ranged in grain size from 0.5 to 2.5 μm.  相似文献   

20.
As a positive temperature coefficient of resistivity (PTCR) material, Ba0.92Ca0.05(Bi0.5Na0.5)0.03TiO3 ceramics with donor doping of Nb5+ and acceptor doping of Mn2+ were prepared by a conventional mixed oxide method. The influence of contents of Nb5+ and Mn2+ on the microstructure and PTCR characteristics of Ba0.92Ca0.05(Bi0.5Na0.5)0.03TiO3 ceramics sintered at 1,360°C for 2 h was investigated. The result showed that the Curie temperature (T c) was shifted to a lower temperature with increasing of the content of Nb5+ and the resistance jump (ρmaxmin) was enhanced with doping of Mn2+. The grain size of ceramic sample decreased with increasing of contents of donor Nb5+ and acceptor Mn2+. The Ba0.92Ca0.05(Bi0.5Na0.5)0.03TiO3 ceramic with 0.4 mol%Nb5+ and 0.04 mol%Mn2+ exhibited a low ρRT of 5.0 × 102 Ω cm, a typical PTCR effect of ρmaxmin > 103, and a T c of 158°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号