首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to add a maternal grandsire (MGS) effect to the existing sire model for national calving ease genetic evaluations. The Animal Improvement Programs Laboratory (AIPL) of USDA assumed responsibility for conducting the national genetic evaluation for calving ease and maintaining the associated database in 1999. Existing evaluations used a sire threshold model. Adding an MGS effect to the model was expected to improve accuracy by partially accounting for merit of mates and differences in maternal ability of the dams. Dystocia data were migrated to a relational database integrated with the AIPL production database. This database design allowed more rigorous data edits by comparison with the production data and improved MGS identification (ID) rate by utilizing pedigrees from the production records. Integration of dystocia data with production data increased MGS ID rate from 58 to 73%. In addition, nearly 200,000 duplicate records were identified using the new edit system. Sire and sire-MGS models were compared using over 10 million observations available for the August 2002 national genetic evaluation. The sire model included herd-year, season, sex of calf, parity of dam, birth year group of sire, and sire. For the sire-MGS model, MGS and birth year group of MGS were added, year-seasons rather than seasons were used, and sex of calf and parity of dam were combined into a single interaction effect. Herd-year, sire, and MGS were random effects. Variance components used for the sire model were those previously used in the national evaluation and for the sire-MGS model were estimated in a separate study. Correlations between predicted genetic merits for service sire calving ease from the two models was 85%, indicating general agreement, but with some significant differences in evaluations. A sire-MGS model was implemented in August 2002 for the national calving ease genetic evaluation system.  相似文献   

2.
Genetic parameters of direct and maternal effects for calving ease in Dutch dairy cattle were estimated using 677,975 calving ease records from second calving. Particular emphasis was given to the presence and impact of environmental dam-offspring covariances on the estimated direct-maternal genetic correlation. Moreover, a measure of heritability for traits affected by maternal effects was developed. In contrast to previous parameters, this parameter reflects the amount of genetic variance that can be used to generate a response to selection in maternally affected traits. Estimated genetic correlations between direct and maternal effects on calving ease have often been moderately negative, particularly in beef cattle. Environmental dam-offspring covariances have been put forward as an explanation for such estimates. We investigated the impact of environmental dam-offspring covariances by fitting correlated residuals between dam and offspring records in the statistical model, and by comparing results of a sire-maternal grandsire model with those of an animal model. Results show that calving ease in Dutch dairy cattle has a direct heritability of approximately 0.08, a maternal heritability of approximately 0.04, a direct-maternal genetic correlation of approximately −0.20, and a total heritable variance equal to approximately 11% of phenotypic variance. Results of animal models and sire-maternal grandsire models were very similar. The direct-maternal environmental covariance was near zero, and consequently had very little impact on the estimated genetic parameters. Transformation of observations to a liability scale did not affect the estimated genetic parameters and yielded a nearly identical ranking of sires.  相似文献   

3.
Our objective was to evaluate breed differences for heat-stress resistance as reflected by age at first calving and first calving interval. We examined the effect of geographic location and birth season on age at first calving, and geographic location and first calving season on first calving interval on Holsteins and Jerseys, and Holsteins and Brown Swiss located on the same farm. We defined 7 regions within the United States: Northwest, Central north, Northeast, Central, Central south, Southwest, and Southeast, and analyzed 7 individual states: Ohio, Wisconsin, Oregon, California, Arizona, Texas, and Florida. Brown Swiss were older than Holsteins at first calving (833 +/- 2.4 vs. 806 +/- 2.0 d in regions, and 830 +/- 3.1 vs. 803 +/- 2.4 d in states), but Holsteins and Brown Swiss did not differ for first calving interval. Jerseys were younger than Holsteins at first calving and had shorter first calving intervals. In data from individual states, Holsteins housed with Brown Swiss were older at first calving than were Holsteins housed with Jerseys (800 +/- 2.7 vs. 780 +/- 2.5 d). Holsteins housed with one breed or the other were analyzed as a separate data set, and referred to as "type of Holstein." The interaction of "type of Holstein" with first calving season was highly significant for first calving interval. Geographic location and season effects were smaller for Jerseys than for Holsteins; thus, Jerseys showed evidence of heat-stress resistance with respect to Holsteins. Management modified age at first calving in Holsteins to more nearly match that of the other breed. Longer calving intervals might be partly due to voluntary waiting period to breed the cows.  相似文献   

4.
Inbreeding depression on female fertility and calving ease in Spanish dairy cattle was studied by the traditional inbreeding coefficient (F) and an alternative measurement indicating the inbreeding rate (ΔF) for each animal. Data included records from 49,497 and 62,134 cows for fertility and calving ease, respectively. Both inbreeding measurements were included separately in the routine genetic evaluation models for number of insemination to conception (sequential threshold animal model) and calving ease (sire-maternal grandsire threshold model). The F was included in the model as a categorical effect, whereas ΔF was included as a linear covariate. Inbred cows showed impaired fertility and tended to have more difficult calvings than low or noninbred cows. Pregnancy rate decreased by 1.68% on average for cows with F from 6.25 to 12.5%. This amount of inbreeding, however, did not seem to increase dystocia incidence. Inbreeding depression was larger for F greater than 12.5%. Cows with F greater than 25% had lower pregnancy rate and higher dystocia rate (−6.37 and 1.67%, respectively) than low or noninbred cows. The ΔF had a significant effect on female fertility. A ΔF = 0.01, corresponding to an inbreeding coefficient of 5.62% for the average equivalent generations in the data used (5.68), lowered pregnancy rate by 1.5%. However, the posterior estimate for the effect of ΔF on calving ease was not significantly different from zero. Although similar patterns were found with both F and ΔF, the latter detected a lowered pregnancy rate at an equivalent F, probably because it may consider the known depth of the pedigree. The inbreeding rate might be an alternative choice to measure inbreeding depression.  相似文献   

5.
Calving is assumed to be an exhausting and painful event. A drug that eases the calving procedure and alleviates pain would help cows, especially those suffering from dystocia. In a randomized, controlled, and blinded trial, we measured the effect of denaverine hydrochloride on physical and physiological calving parameters. Eighty-three Holstein-Friesian heifers were included in the analysis. Pulling force was measured using a digital force gauge interposed between the calf and a mechanical calf puller. The concentration of cortisol was measured in serum before and after parturition. There was no effect of treatment group on calving modality (i.e., spontaneous vs. assisted calving), duration of calving, and cortisol concentration. The area under the curve of pulling force × time (n = 44), however, was significantly smaller in the treatment group compared with the placebo group. Also, duration of calving assistance was numerically shorter in the treatment group compared with the placebo group. The results provide evidence that calving ease can be influenced by denaverine hydrochloride during calving assistance.  相似文献   

6.
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and calving traits (including calving ease and calf survival) for Ayrshire second-parity cows in Canada. The use of random regression models allowed assessment of the change of genetic correlation from 100 d before calving to 335 d after calving. Therefore, the influence of BCS in the dry period on subsequent calving could be studied. Body condition scores were collected by field staff several times over the lactation in 101 herds from Québec and calving records were extracted from the official database used for Canadian genetic evaluation of calving ease. Daily heritability of BCS increased from 0.07 on d 100 before calving to 0.25 at 335 d in milk. Genetic correlations between BCS at different stages ranged between 0.59 and 0.99 and indicated that genetic components for BCS did not change much over lactation. With the exception of the genetic correlation between BCS and direct calving ease, which was low and negative, genetic correlations between BCS and calving traits were positive and moderate to high. Correlations were the highest before calving and decreased toward the end of the ensuing lactation. The correlation between BCS 10 d before calving and maternal calving ease was 0.32 and emphasized the relationship between fat cows before calving with dystocia. Standards errors of the genetic correlations estimates were low. Genetic correlations between BCS and calf survival were moderate to high and favorable. This indicates that cows with a genetically high BCS across lactation would have a greater chance of producing a calf that survived (maternal calf survival) and that they would transmit genes that allow the calf to survive (direct calf survival).  相似文献   

7.
Stillbirth (SB) often results in reduced milk yield, compromised reproductive performance, and decreased dam longevity. Corrective mating can be used as a short-term solution to the problem, but long-term improvement of the population requires the routine calculation of genetic evaluations. Breeding values for SB have been available for Holstein (HO) bulls since 2006, but not for Brown Swiss (BS) or Jersey (JE) bulls. In this study, a multi-breed sire-maternal grandsire threshold model was used to perform genetic evaluations for SB of BS, JE, and HO bulls using more than 14 million purebred and crossbred calving records. Phenotypically, the percentage of SB (%SB) across all lactations were 3.7% in JE, 5.1% in BS, and 6.3% in HO. Direct heritabilities for BS, JE, and HO were 0.008, 0.007, and 0.008, and maternal heritabilities were 0.002, 0.016, and 0.021, respectively. Compared with HO, crossbred calvings from BS and JE bulls bred to HO cows lowered %SB by 1.5 and 1.2%, respectively. In general, %SB increased considerably as calving difficulty increased in all 3 breeds; however, in JE, %SB was constant for dystocia scores of 3 (needed assistance), 4 (considerable force), and 5 (extreme difficulty). Compared with purebred HO calvings, purebred BS and JE calvings had lower phenotypic %SB by up to 5.5 and 7.8%, respectively, and BS × HO and JE × HO crossbred calvings decreased %SB by up to 3.8 and 4.1%, respectively. As expected, SB rates in primiparous cows were higher than those in multiparous cows. Female calves had greater %SB than male calves in all parities for JE and in second-and-later parities for BS. Favorable (decreasing) phenotypic and genetic trends from 1999 to 2009 were observed in all 3 breeds. Heterosis of SB for BS and JE was −0.026 and −0.149, respectively, on the underlying scale, which corresponds to effects on service-sire SB (SSB) and daughter SB (DSB) predicted transmitting ability (PTA) of −0.3 and −0.5% in BS, and −1.5 and −2.7% in JE. Overall, in the current population, BS bulls had the most desirable average SSB PTA of 4.8%, compared with 5.6% for JE and 5.5% for HO. Brown Swiss and JE bulls both had average DSB PTA of 6.5%, lower than that of 7.7% in HO. Average reliabilities of SSB and DSB in 3 breeds ranged from 45 to 50%. The use of a BS-JE-HO multibreed genetic evaluation for SB in the United States is feasible, and the addition of SSB and DSB to the lifetime net merit selection index will help improve the profitability of BS and JE cattle in the United States.  相似文献   

8.
The effect of calving ease on the fertility and production performance of both dam and calf was studied in approximately 50,000 and 10,000 UK Holstein-Friesian heifers and heifer calves, respectively. The first objective of this study was to estimate the effect of a difficult calving on the subsequent first-lactation milk production by estimating lactation curves using cubic splines. This methodology allows the estimation of daily milk, protein, and fat yields following calvings of differing degrees of difficulty. Losses in milk yield after a difficult calving have been quantified previously; however, estimates are generally restricted to the accumulated yields at specific days in lactation. By fitting cubic splines, gaps (in which the shape of the lactation curve can be merely guessed) between estimations were avoided. The second objective of this study was to estimate the effect of a difficult birth on the subsequent performance of the calf as an adult animal. Even though the calving process is known to involve cooperation between dam and calf, the effect of a difficult calving has, until now, only been estimated for the subsequent performance of the dam. Addressing the effects of a difficult birth on the adult calf strengthens the importance of calving ease as a selection trait because it suggests that the benefit of genetic improvement may currently be underestimated. The effect of calving ease on the subsequent reproductive performance of dam and calf was analyzed using linear regression and with calving ease score fitted as a fixed effect. Dams with veterinary-assisted calvings required 0.7 more services to conception and 8 more days to first service and experienced a 28-d longer calving interval in first lactation compared with dams that were not assisted at calving. Effects of calving ease on the reproductive performance of the adult calf in first lactation were not detected. Losses in milk yield of the dam were significant between d 9 to 90 in milk subsequent to a veterinary-assisted calving, creating a loss of approximately 2 kg of milk per day, compared with a nonassisted calving. Calves being born with difficulties showed a significant reduction in milk yield in first lactation, demonstrating the lifelong effect of a difficult birth. Compared with nonassisted calves, veterinary-assisted calves showed a loss of 710 kg in accumulated 305-d milk yield, which was significant from 129 to 261 d in milk. This suggests that from birth to production, physiological effects of a bad calving are not negated. Results furthermore suggest a beneficial effect of farmer assistance at calving on the milk yield of both dam and calf, when moderate difficulties occurred.  相似文献   

9.
The aim of this study was to analyze the impact of calving ease (CE) on functional longevity of Basque Holsteins, using a Weibull proportional hazards model. The data considered for the analysis were 53,353 calving records from 25,810 Holstein cows distributed across 781 herds and sired by 746 bulls. The effects included in the statistical model were age at first calving, stage of lactation, interaction between year and season of calving, 305-d adjusted milk yield, CE, herd, and sire. Calving ease was considered as a time-dependent covariate and, as was the case for the rest of covariates included in the model, had a significant effect on functional longevity. Calvings needing assistance or surgery increased culling risk by 18%, when compared with unassisted calvings. The effect of CE on length of productive life in primiparous and multiparous cows was also investigated. A second analysis was performed replacing the CE effect with the interaction between parity and CE to evaluate the effect of CE in primiparous and multiparous cows. An increase in calving difficulty had a greater impact on culling during first lactations than in subsequent ones. Therefore, difficult calvings, mainly at first parities, had a high impact on herd amortization costs, increasing them by 10% in relation to easy calvings. Therefore, calving difficulty should be avoided as much as possible, especially in primiparous cows, to avoid reduction of profitability.  相似文献   

10.
Evaluations that analyze first and later parities as correlated traits were developed separately for calving ease (CE) from over 15 million calving records of Holsteins, Brown Swiss, and Holstein-Brown Swiss crossbreds and for stillbirth (SB) from 7.4 million of the Holstein CE records. Calving ease was measured on a scale of 1 (no difficulty) to 5 (difficult birth); SB status was designated as live or dead within 48 h. Scores for CE and SB were transformed separately for each trait by parity (first or later) and calf sex (male or female) and converted to a unit standard deviation scale. For variance component estimation, Holstein data were selected for the 2,968 bulls with the most records as sire or maternal grandsire (MGS). Six samples were selected by herd; samples ranged in size from 97,756 to 146,138 records. A multiparity sire-MGS model was used to calculate evaluations separately for CE and for SB with first and later parities as correlated traits. Fixed effects were year-season, calf sex, and sire and MGS birth years; random effects were herd-year interaction, sire, and MGS. For later parities, sex effects were separated by parity. The genetic correlation between first and later parities was 0.79 for sire and 0.81 for MGS for CE, and 0.83 for sire and 0.74 for MGS for SB. For national CE evaluations, which also include Brown Swiss, a fixed effect for breed was added to the model. Correlations between solutions on the underlying scale from the January 2008 USDA CE evaluation with those from the multiparity analysis for CE were 0.89 and 0.91 for first- and later-parity sire effects and 0.71 and 0.88 for first- and later-parity MGS effects; the larger value for later parity reflects that later parities comprised 64% of the data. Corresponding correlations for SB were 0.81 and 0.82 for first- and later-parity sire effects and 0.46 and 0.83 for first- and later-parity MGS effects, respectively. Correlations were higher when only bulls with a multiparity reliability of >65% were included. The multiparity analysis accounted for genetic differences in calving performance between first and later parities. Evaluations should become more stable as the portion of a bull's observations from different parities changes over his lifetime. Accuracy of the net merit index can be improved by adjusting weights to use evaluations for separate parities optimally.  相似文献   

11.
Genetic parameters were estimated for rear legs (rear view; RLRV) and 15 current linear type traits of Brown Swiss and Guernsey dairy cattle. The Brown Swiss Cattle Breeders’ Association of the USA and the American Guernsey Association began scoring RLRV in 2004. For Brown Swiss, 8,502 records were available for 7,676 cows in 417 herds; Guernsey data included 5,437 records for 4,749 cows in 229 herds. Nine unknown-parent groups were defined for each breed, each with 2 birth years. The model included fixed effects for the interaction of herd, appraisal date, and parity; appraisal age within parity; and lactation stage within parity and random effects for animal, permanent environment, and residual error. The multitrait analysis for RLRV and the 15 linear type traits used canonical transformation, multiple diagonalization, and a decelerated expectation-maximization REML algorithm. For Brown Swiss, heritability was 0.102 for RLRV and ranged from 0.099 for rear legs (side view) to 0.453 for stature. For Guernseys, heritability ranged from 0.078 for RLRV to 0.428 for stature. For Brown Swiss, the highest genetic correlation with RLRV was 0.71 for rear udder width; the most negative correlation was −0.19 with rump angle. For Guernseys, the highest genetic correlations with RLRV were 0.43 for rear udder width and 0.42 for body depth; the most negative correlation was −0.46 with rear legs (side view). With heritability near 0.10, RLRV should be useful in selection for improved locomotion. Release of genetic evaluations for RLRV began in May 2006 for Brown Swiss and Guernseys.  相似文献   

12.
Data collected from Australian Holstein cows that calved between 1995 and 2016 were used for estimating genetic parameters and genetic evaluation of gestation length (GL). Genetic parameters were estimated using a sire maternal grandsire model considering GL in heifers as correlated, but a different trait to adult cows and animal repeatability model. The key objective of this study was to assess if selective mating of bulls with short GL estimated breeding values (EBV) can help to modify calving patterns in predominantly pasture-based production systems and thereby contribute to the reduction of calving induction. The mean GL in heifers and adult cows was 280 and 281 d, respectively. The heritability of direct GL was 0.28 in heifers, which is slightly lower than in adult cows (0.36). The maternal heritability of GL was close to 0.04 in both heifer and adult cows. The genetic correlation between direct effects in heifers and adult cows was lower (0.88) than between maternal effects (0.94). A genetic evaluation model that considered heifer and adult cow data as the same trait in a repeatability animal model showed adequate variability in EBV for both direct and maternal GL. The genetic trend in direct GL EBV declined from 2005 in bulls and from 2006 in cows. Selective mating of bulls with short direct GL EBV showed that the GL and calving interval of their mates can be modified by up to 3.5 d for GL and 2.0 d for calving interval. Relative to parent average, the use of genotype data to calculate genomic EBV increased the reliability of EBV by up to 11% in validation bulls when daughter trait deviation of bulls with trait deviation of cows (11%) and deregressed breeding values (8%) were used as response variables. On average, for animals with only genotype data, the GL EBV can be predicted with about 50 to 60% reliability (expected) depending on the response variable (deregressed breeding values or daughter trait deviation and trait deviation) and the size of reference set. Overall, the results of this study show that calving patterns can be made tighter by selectively mating short GL EBV bulls to cows that do not become pregnant early in the mating season. Additionally, better reproductive management and the use of bulls with high female fertility EBV are still crucial for the success of a pasture-based dairy production system.  相似文献   

13.
Genetic parameters and relative breeding values were estimated for milking speed of US Brown Swiss dairy cattle. Owner-recorded milking-speed scores on a scale of 1 (slow) to 8 (fast) were collected by the Brown Swiss Association as part of its linear type appraisal program starting in 2004. Data were 7,366 records for 6,666 cows in 393 herds. The pedigree file included information for 21,458 animals born in 1985 or later. Six unknown-parent groups that each included 4 birth years were defined. The model included fixed effects for herd appraisal date and parity-lactation stage and random effects for permanent environment, animal, and error. Within parity (1, 2, and ≥3), 6 groups were defined: unknown calving date, four 90-d lactation stages, and lactations with >400 d in milk. Heritability of 0.22 and repeatability of 0.42 were estimated by average-information REML; residual variance was 1.13. Little trend in estimated breeding value was found for cows born from 1999 through 2002. Although solutions increased with lactation stage for first-parity cows by 0.37, no clear trend was found for later parities. Genetic evaluations for milking speed were expressed as relative breeding values with a mean of 100 and a standard deviation of 5. The 121 bulls with ≥10 daughters had milking speed evaluations that ranged from 83 to 112 and had correlations of 0.56 with productive life evaluations and −0.40 with somatic cell score evaluations. The association of faster milking speed with lower somatic cell score was not expected. The moderate heritability found for milking speed indicates that the evaluations (first released in May 2006) should be useful in detecting bulls with slow-milking daughters.  相似文献   

14.
In Swedish Holstein dairy cattle, genetic effects on stillbirth and calving difficulty were studied in 411,409 first- and 281,193 second-calvers. A linear single-trait sire-maternal grandsire model and a threshold model using a Gibbs sampling technique were used to analyse calving data from 1985 to 1996. In first calving when using the linear model, the heritability of stillbirth on the visible scale was 4% for the direct effect and 3% for the maternal effect. For calving difficulty it was 6% and 5% for direct and maternal effects, respectively. In second calving the corresponding heritabilities for the two traits were considerably lower, less than 1%. Adjusting for calving difficulty in linear analysis of stillbirth halved the heritabilities for the direct and maternal effects in first calving. When using a threshold model, heritabilities for stillbirth in first-calvers were 12% and 8% for direct and maternal effects, respectively, and for calving difficulty they were 17% and 12%. At second calving corresponding heritabilities were 2 to 4% for stillbirth and 4 to 7% for calving difficulty. The correlation between direct and maternal effects was around -0.1, irrespective of whether the linear or the threshold model was used for first-calvers. The genetic correlations between bulls' EBV from first and second calving were 0.4 to 0.5 for direct and maternal effects in stillbirth, whereas they were 0.6 to 0.7 for calving difficulty. In first-calvers there was a substantial genetic variation in both traits, expressed by differences between breeding values of bulls, despite fairly low heritability. The results obtained in this study suggest that first-parity records should preferably be used for genetic evaluation of bulls for calving performance. In such routine evaluations both stillbirth and calving difficulty, and both direct and maternal effects, should be included.  相似文献   

15.
The objectives of this study were to infer genetic parameters for stillbirth (SB) and calving difficulty (CD) and to evaluate phenotypic and genetic change for these traits in the Norwegian Red breed. Stillbirth is recorded as a binary trait and calving difficulty has 3 categories: 1) easy calving, 2) slight problems, and 3) difficult calving. The overall mean frequency of SB in Norwegian Red was 3% at first calving and 1.5% for second and later calvings; mean frequency of the category “difficult calving” was 2 to 3% for heifers and 1% for cows at second and later calvings. Mean stillbirth rate has remained unchanged from 1978 to 2004. The proportion of the category “difficult calving” has not changed over the years, but the “slight problems” category increased from 4 to 7% for heifers and from 2 to 3% for cows. A total of 528,475 first-calving records were analyzed with a Bayesian bivariate sire-maternal grandsire threshold liability model. Posterior means of direct and maternal heritabilities were 0.13 and 0.09 for CD, and 0.07 and 0.08 for SB, respectively. Strong genetic correlations were found between direct SB and direct CD (0.79), and between maternal SB and maternal CD (0.62), whereas all genetic correlations between direct and maternal effects within or between traits were close to zero. These positive correlations are favorable in the sense that selection for one of the traits would result in a favorable selection response for the second trait. No genetic correlations between direct and maternal effects imply that bulls should be evaluated both as sire of the calf (direct) and sire of the cow (maternal). No genetic change for SB was found, and a slight genetic improvement for CD was detected.  相似文献   

16.
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and reproduction traits for first-parity Canadian Ayrshire and Holstein cows. Body condition scores were collected by field staff several times over the lactation in herds from Québec, and reproduction records (including both fertility and calving traits) were extracted from the official database used for the Canadian genetic evaluation of those herds. For each breed, six 2-trait animal models were run; they included random regressions that allowed the estimation of genetic correlations between BCS over the lactation and reproduction traits that are measured as a single lactation record. Analyses were undertaken on data from 108 Ayrshire herds and 342 Holstein herds. Average daily heritabilities of BCS were close to 0.13 for both breeds; these relatively low estimates might be explained by the high variability among herds and BCS evaluators. Genetic correlations between BCS and interval fertility traits (days from calving to first service, days from first service to conception, and days open) were negative and ranged between −0.77 and −0.58 for Ayrshire and between −0.31 and −0.03 for Holstein. Genetic correlations between BCS and 56-d nonreturn rate at first insemination were positive and moderate. The trends of these genetic correlations over the lactation suggest that a genetically low BCS in early lactation would increase the number of days that the primiparous cow was not pregnant and would decrease the chances of the primiparous cow to conceive at first service. Genetic correlations between BCS and calving traits were generally the strongest at calving and decreased with increasing days in milk. The correlation between BCS at calving and maternal calving ease was 0.21 for Holstein and 0.31 for Ayrshire and emphasized the relationship between fat cows around calving and dystocia. Genetic correlations between calving traits and BCS during the subsequent lactation were moderate and favorable, indicating that primiparous cows with a genetically high BCS over the lactation would have a greater chance of producing a calf that survived (maternal calf survival) and would transmit the genes that allowed the calf to be born more easily (maternal calving ease) and to survive (direct calving ease).  相似文献   

17.
The objective of the present study was to investigate how the crossbreeding of Holstein (HO) cows with bulls from Nordic and Alpine European breeds affect milk quality traits, traditional milk coagulation properties (MCP), and curd firmness modeling obtained from individual milk samples. A total of 506 individual milk samples were collected from evening milking at 3 commercial farms located in Northern Italy. Over the past decade, the 3 farms have followed crossbreeding programs in part of their herds, whereas the remainder of the animals consisted of purebred HO. The basic scheme was a 3-breed rotation based on the use of Swedish Red (SR) semen on HO cows (SR × HO), the use of Montbéliarde (MO) semen on first-cross cows [MO × (SR × HO)], and the use of HO semen in the third cross. In all herds, a smaller proportion of purebred HO were mated to M and Brown Swiss (BS) bulls, and these first crosses were mated to SR and MO bulls, respectively. Milk samples were analyzed for milk composition and MCP, and parameters for curd firmness were modeled. Compared with purebred HO, crossbred cows produced less milk with lower lactose content, higher fat and protein content, and a tendency for higher casein content. Crossbred cows generally produced milk with a more favorable curd-firming rate (k20) and curd firmness 30 min after rennet addition, among traditional MCP, and better trends of curd firmness measures as shown by model parameters: estimated rennet coagulation time, asymptotical potential value of curd firmness, and curd-firming instant rate constant. Among crossbred cows, SR × HO presented longer rennet coagulation time compared with MO × HO and BS × HO cows, and MO × HO showed shorter k20 compared with BS × HO cows. Among second-generation cows, those sired by SR bulls showed a lower incidence of noncoagulated samples, higher curd firmness 30 min after rennet addition and asymptotical potential value of curd firmness, and faster curd-firming instant rate constant compared with animals sired by MO bulls. Our results revealed that different sire breeds were characterized by specific technological aptitudes, but that these were not strictly related to other milk quality traits. Furthermore, the favorable characteristics (in terms of the quality and technological properties of milk) could be maintained in the third generation of 3-way crosses without negative effects on milk yield, even though the HO heritage had been reduced from 50 to 25%. Our findings, therefore, suggest that different types of sires can be chosen (depending on the intended use of the milk) to ensure the optimization of farm crossbreeding programs.  相似文献   

18.
First-lactation milk yield test-day records on cows from Australia, Canada, Italy, and New Zealand were analyzed by single- and multiple-country random regression models. Models included fixed effects of herd-test day and breed composition-age at calving-season of calving by days in milk, and random regressions with Legendre polynomials of order four for animal genetic and permanent environmental effects. Milk yields in different countries were defined as genetically different traits for the purpose of multiple-trait model. Estimated breeding values of bulls and cows from single- and multiple-trait models were compared within and across countries for two traits: total milk yield in lactation and lactation persistency, defined as the linear coefficient of animal genetic curve. Correlations between single- and multiple-trait evaluations within country for total yield were higher than 0.95 for bulls and close to 1 for cows. Correlations for lactation persistency were lower than respective correlations for total yield. Between country correlations for lactation yield ranged from 0.93 to 0.96, indicating different ranking of bulls on different country scales under multiple-trait model. Lactation persistency had in general lower between-country correlations, with the highest values for Canada-Italy and Australia-New Zealand pairs, for both single- and multiple-country models. Although multiple-country random regression test-day model was computationally feasible for four countries, the same would not be true for routine international genetic evaluation in the near future.  相似文献   

19.
The primary aim of this study was to evaluate the phenotypic and genetic trends for stillbirth in Danish Holsteins. Trends of calving difficulty and calf size were also evaluated. The second aim was to compare predicted transmitting abilities (PTA) of sires for stillbirth using a linear and a threshold model. Direct and maternal genetic effects were modeled by fitting correlated additive genetic effects of the sire and the maternal grandsire (MGS). For both the calf and the dam, covariates of breed proportions of Holstein-Friesian (HF) and the heterozygosity between HF and the original Danish Black and White (ODBW) were included. Records from 1.8 million first-calving Danish Holstein cows calving from 1985 to 2002 were used. In this period, the overall frequency of stillbirth increased from 0.071 to 0.090. An unfavorable genetic trend of stillbirth was found for both the direct and maternal effect. The background for the genetic trends was an intense use of HF sires as sires of sons, which increased the proportion of HF genes to 94% in the Danish Holstein calves born in 2002. The effect of the imported HF genes was higher direct effects of calf size, calving difficulty, and stillbirth compared with the ODBW genes. The maternal effect of stillbirth was poorer for HF than for ODBW even though HF had a better maternal calving performance than ODBW. The threshold and the linear models showed almost similar predictions of transmitting abilities of sires.  相似文献   

20.
Calving difficulty is a trait that greatly affects animal welfare, herd profitability, and the amount of labor required by cattle farmers. It is influenced by direct and maternal genetic components. Selection and breeding strategies can optimize the accuracy of genetic evaluations and correctly emphasize calving difficulty in multiple-trait indices provided there are accurate estimates of genetic parameters. In Ireland, large differences exist in the age at which heifers first give birth to calves. The objective of this study was to estimate genetic parameters for calving difficulty in first-parity Holsteins and to determine whether these differed with age of the heifer at calving. Transformed calving difficulty records for 18,798 Holstein heifers, which calved between January 2002 and May 2006, were analyzed using univariate, multitrait, and random regression linear sire-maternal grandsire models. The model that 1) fitted a second-order random regression of dam age at first parity for the direct component, 2) treated the maternal component as a single trait regardless of dam age, and 3) fitted a single residual variance component was optimal. Heritabilities for direct (0.13) and maternal (0.04) calving difficulty were significantly different from zero. These 2 components were moderately negatively correlated (−0.47). Estimates of direct genetic variance and heritability were heterogeneous along the dam age trajectory, decreasing initially with dam age before subsequently increasing. Heritability estimates ranged between 0.11 and 0.37 and were higher for records with younger and older dams at parturition. Genetic correlations between the direct components of calving difficulty decreased from unity to 0.5 with increasing distance between dam ages at parturition. The results of this study indicated that heterogeneity of direct genetic variance existed for calving difficulty, depending on dam age at first parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号