共查询到18条相似文献,搜索用时 109 毫秒
1.
基于类信息的文本聚类中特征选择算法 总被引:2,自引:0,他引:2
文本聚类属于无监督的学习方法,由于缺乏类信息还很难直接应用有监督的特征选择方法,因此提出了一种基于类信息的特征选择算法,此算法在密度聚类算法的聚类结果上使用信息增益特征选择法重新选择最有分类能力的特征,实验验证了算法的可行性和有效性。 相似文献
2.
为了将语义信息用于文本聚类和有效地进行特征选择,文中提出一种基于协同聚类的两阶段文本聚类方法.该方法分别对文档和特征进行聚类从而得到特征与主题之间的语义关联关系.然后利用此关系来相互调整彼此的聚类结果.实验结果表明,利用特征与主题之间的语义关联关系能有效提高聚类效果. 相似文献
3.
基于LDA特征选择的文本聚类 总被引:1,自引:1,他引:0
特征选择在文本聚类中起着至关重要的作用,将产生式模型Latent Dirichlet Allocation(LDA)引入基于K-means算法的文本聚类中,通过提取特征与隐含主题的关系进行特征选择.在第2届中文倾向性分析评测的语料上的实验结果表明,当选择2%的特征时,相对于单词贡献度(TC,Term Contribution)方法的纯度和F值分别提高了0.15和0.16,相对于LDA直接得到文本与主题的关系的实验结果的纯度和F值分别提高了0.14和0.13. 相似文献
4.
Web文本表示方法作为所有Web文本分析的基础工作,对文本分析的结果有深远的影响。提出了一种多维度的Web文本表示方法。传统的文本表示方法一般都是从文本内容中提取特征,而文档的深层次特征和外部特征也可以用来表示文本。本文主要研究文本的表层特征、隐含特征和社交特征,其中表层特征和隐含特征可以由文本内容中提取和学习得到,而文本的社交特征可以通过分析文档与用户的交互行为得到。所提出的多维度文本表示方法具有易用性,可以应用于各种文本分析模型中。在实验中,改进了两种常用的文本聚类算法——K-means和层次聚类算法,并命名为多维度K-means MDKM和多维度层次聚类算法MDHAC。通过大量的实验表明了本方法的高效性。此外,我们在各种特征的结合实验结果中还有一些深层次的发现。 相似文献
5.
针对大多数基于向量空间模型的中文文本聚类算法存在高维稀疏、忽略词语之间的语义联系、缺少聚簇描述等问题,提出基于语义列表的中文文本聚类算法CTCAUSL(Chinese text clustering algorithm using semantic list)。该算法采用语义列表表示文本,一个文本的语义列表中的词是该文本中出现的词,从而降低了数据维数,且不存在稀疏问题;同时利用词语间的相似度计算解决了同义词近义词的问题;最后用语义列表对聚簇进行描述,增加了聚类结果的可读性。实验结果表明,CTCAUSL算法在处理大量文本数据方面具有较好的性能,并能明显提高中文文本聚类的准确性。 相似文献
6.
高维特征空间中文本聚类研究 总被引:12,自引:2,他引:10
依据信息论的思想,从文档信息量变化的角度对文本聚类的过程进行了分析,指出了信息量在聚类过程中呈现的规律性,进而提出一种基于信息量模型的聚类分析算法。通过对高维特征空间中影响聚类准确率因素的分析,发现特征之间复杂的语义联系和过高的维度是影响文本聚类准确率的重要因素。从削弱特征之间的语义联系入手,提出了一种特征聚类算法,其算法复杂度与处理的文档数量无关,提高了高维空间下聚类的速度和效果。两种算法的结合使得对大量高维文本数据直接聚类变得可行,实际的测试中获得了满意的效果。 相似文献
7.
用于文本分类和文本聚类的特征抽取方法的研究 总被引:2,自引:0,他引:2
文本信息处理已成为一门日趋成熟、应用面日趋广泛的学科.文本分类和聚类技术是应信息检索和查询需要而出现的自然语言处理领域的重要研究课题.面对急速膨胀的各种文本信息,通过使用文本分类和聚类技术,人们能对这些信息进行高效地组织和整理,以便于实现信息的准确定位和分流,从而提高用户查询和检索的效率.本文针对文本信息处理中最重要的研究方向--文本分类和聚类技术展开了研究,分析了特征抽取法在文本分类和文本聚类中应用的重要性,以及论证了为何要对文本进行特征抽取,最后分别阐述了用于文本分类和文本聚类的特征抽取方法. 相似文献
8.
基于向量空间模型(VSM)的文本聚类会出现向量维度过高以及缺乏语义信息的问题,导致聚类效果出现偏差。为解决以上问题,引入《知网》作为语义词典,并改进词语相似度算法的不足。利用改进的词语语义相似度算法对文本特征进行语义压缩,使所有特征词都是主题相关的,利用调整后的TF-IDF算法对特征项进行加权,完成文本特征抽取,降低文本表示模型的维度。在聚类中,将同一类的文本划分为同一个簇,利用簇中所有文本的特征词完成簇的语义特征抽取,簇的表示模型和文本的表示模型有着相同的形式。通过计算簇之间的语义相似度,将相似度大于阈值的簇合并,更新簇的特征,直到算法结束。通过实验验证,与基于K-Means和VSM的聚类算法相比,文中算法大幅降低了向量维度,聚类效果也有明显提升。 相似文献
9.
维吾尔语文本聚类中特征选择对聚类的效率和效果都有直接影响。根据维吾尔语构词法规律,在原有基于文档频率特征选择算法基础上,提出新的维吾尔语文本聚类的特征提取算法。新方法将词干作为文本的特征项,在原算法上融合了基于特征贡献度的选择方法,并使用Java语言实现了一个维吾尔语文本聚类系统。使用该系统在人工分类的文本集上进行实验,结果表明:新的特征提取算法有效地降低了文本向量空间维度,在准确率、召回率和F-Measure等指标方面均有不同程度提高。 相似文献
10.
文本聚类是自然语言处理中的一项重要研究课题,主要应用于信息检索和Web挖掘等领域。其中的关键是文本的表示和聚类算法。在层次聚类的基础上,提出了一种新的基于边界距离的层次聚类算法,该方法通过选择两个类间边缘样本点的距离作为类间距离,有效地利用类的边界信息,提高类间距离计算的准确性。综合考虑不同词性特征对文本的贡献,采用多向量模型对文本进行表示。不同文本集上的实验表明,基于边界距离的多向量文本聚类算法取得了较好的性能。 相似文献
11.
多代表点特征树与空间聚类算法 总被引:1,自引:0,他引:1
空间数据具有海量、复杂、连续、空间自相关、存在缺损与误差等的特点,要求空间聚类算法具有高效率,能处理各种复杂形状的簇,聚类结果与数据空间分布顺序无关,并且对离群点是健壮的等性能,已有的算法难以同时满足要求。本文提出了一个适合处理海量复杂空间数据的数据结构一多代表点特征树。基于多代表点特征树提出了适合挖掘海量复杂空间数据聚类算法CAMFT,该算法利用多代表点特征树对海量的数据进行压缩,结合随机采样的方法进一步增强算法处理海量数据的能力;同时,多代表点特征树能够保存复杂形状的聚类特征,适合处理复杂空间数据。实验表明了算法CAMFT能够快速处理带有离群点的复杂形状聚类的空间数据,结果与对象空间分布顺序无关,并且效率优于已有的同类聚类算法BLRCH与CURE。 相似文献
12.
本文研究了一种应用于高速图像检测的基于亚像素特征点提取的螺纹检测粗糙聚类算法。其基本思想是:采用分阶段的高精度亚像素特征点提取方法,将图像边缘特征离散为亚像素级特征点,利用粗糙集中的不可分辨概念和近似集合概念,对图像亚像素级特征点进行粗糙聚类,以便区分图像中多个螺纹零件,确定螺纹小径不可分辨类。在此基础上,给出了螺纹几何参数测量的步骤和计算规则,根据计算结果对螺纹零件进行基于图像特征的判别和处理。这种基于亚像素特征点提取的螺纹检测粗糙聚类方法具有较高的检测精度。 相似文献
13.
文本聚类是自然语言处理研究中一项重要研究课题,文本聚类技术广泛地应用于信息检索、Web挖掘和数字图书馆等领域。本文针对特征词在文档中的不同位置对文档的贡献大小不同,提出了基于特征词的位置加权文本聚类改进算法——TCABPW。通过选取反映文档主题的前L个高权值的特征项构造新的文本特征向量,采用层次聚类和K-means文本聚类相结合的改进算法实现文本聚类。实验结果表明,提出的改进算法在不影响聚类质量的情况下大大地降低了文本聚类的维度,在稳定性和纯度上都有显著提高,获得了较好的聚类效果。 相似文献
14.
一种高效的用于文本聚类的无监督特征选择算法 总被引:14,自引:0,他引:14
特征选择虽然非常成功地应用于文本分类,但却很少用于文本聚类,这是因为那些高效的特征选择方法通常都是有监督的特征选择算法,它们因为需要类信息而无法直接应用于文本聚类.为了能将这些方法应用到文本聚类上,提出了一种新的无监督特征选择算法:基于K-Means的特征选择算法(KFS).这个算法通过在不同K-Means聚类结果上使用有监督特征选择的方法,成功地选择出了最为重要的一小部分特征,使文本聚类的性能提高了近15%. 相似文献
15.
16.
刘欣佘贤栋唐永旺王波 《数据采集与处理》2017,32(5):1052-1060
针对互联网短文本特征稀疏和速度更新快而导致的短文本聚类性能较差的问题,本文提出了一种基于特征词向量的短文本聚类算法。首先,定义基于词性和词长度加权的特征词提取公式并提取特征词代表短文本;然后,使用Skip-gram模型(Continous skip-gram model)在大规模语料中训练得到表示特征词语义的词向量;最后,引入词语游走距离(Word mover′s distance,WMD)来计算短文本间的相似度并将其应用到层次聚类算法中实现短文本聚类。在4个测试数据集上的评测结果表明,本文方法的效果明显优于传统的聚类算法,平均F值较次优结果提高了56.41%。 相似文献
17.
短文本由于其稀疏性、实时性、非标准性等特点,在文本特征选择和文本表示方面存在较多问题,从而影响文本分类精度。针对文本特征选择方面存在较高的特征维数灾难的问题,提出一种二阶段的文本特征选择算法。首先在互信息算法的基础上,引入平衡因子、频度、集中度、词性及词在文本中的位置等5个指标对互信息值进行计算,然后将排序结果靠前的特征集初始化进行遗传算法的训练从而得到最优特征集合。因为TFIDF在计算时针对的是整篇语料而没有考虑类间分布不均的情况,在计算IDF公式时引入方差,并将改进后的TFIDF公式对Word2Vec词向量进行加权表示文本。将改进算法应用在人工构建的百科用途短文本语料集中进行实验,实验结果表明改进的文本特征选择算法和文本表示算法对分类效果有2%~5%的提升。 相似文献
18.
因特网文本智能挖掘的模糊聚类算法研究 总被引:3,自引:3,他引:0
随着Internet的深入发展及普及应用,网络中可获取的大部分文本信息由来自各种数据源的文档组成.由于电子形式的文本信息飞速增涨,可以获知的文本信息已成海量之势,文本挖掘已经成为信息领域的研究热点,快速得到目标文本成为互联网发展的瓶颈.在动态聚类方法和基于特征属性分类法的基础上提出基于混合模糊聚类理论的文本数据分类系统新模型,在模型基础上探究了一种模糊聚类仿真算法,通过实验验证算法能有效提高文本分类效率及文本分类准确率,从而在实际网络文本挖掘应用中快速得到目标文本,实现因特网文本智能挖掘. 相似文献