首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eastern hemlock (Tsuga canadensis) is in rapid decline because of infestation by the invasive hemlock woolly adelgid (Adelges tsugae; ‘HWA’) and, to a lesser extent, the invasive elongate hemlock scale (Fiorinia externa; ‘EHS’). For many conifers, induced oleoresin-based defenses play a central role in their response to herbivorous insects; however, it is unknown whether eastern hemlock mobilizes these inducible defenses. We conducted a study to determine if feeding by HWA or EHS induced changes in the volatile resin compounds of eastern hemlock. Young trees were experimentally infested for 3 years with HWA, EHS, or neither insect. Twig and needle resin volatiles were identified and quantified by gas chromatography/mass spectrometry. We observed a suite of changes in eastern hemlock’s volatile profile markedly different from the largely terpenoid-based defense response of similar conifers. Overall, both insects produced a similar effect: most twig volatiles decreased slightly, while most needle volatiles increased slightly. Only HWA feeding led to elevated levels of methyl salicylate, a signal for systemic acquired resistance in many plants, and benzyl alcohol, a strong antimicrobial and aphid deterrent. Green leaf volatiles, often induced in wounded plants, were increased by both insects, but more strongly by EHS. The array of phytochemical changes we observed may reflect manipulation of the tree’s biochemistry by HWA, or simply the absence of functional defenses against piercing-sucking insects due to the lack of evolutionary contact with these species. Our findings verify that HWA and EHS both induce changes in eastern hemlock’s resin chemistry, and represent the first important step toward understanding the effects of inducible chemical defenses on hemlock susceptibility to these exotic pests.  相似文献   

2.
The terpenoid content of eastern hemlock (Tsuga canadensis) foliage was measured over an annual cycle of development from bud opening, shoot elongation, shoot maturation, to bud-break at the start of the next growing season. The objective was to determine if variation in terpenoid composition is linked with spatial and temporal feeding preferences of the hemlock woolly adelgid (HWA; Adelges tsugae). The HWA has two periods of feeding over the course of 1 yr spanning two complete generations. There are two periods of feeding separated by a nonfeeding period where the adelgid estivates. HWA prefers to feed on mature, rather than young, expanding tissue. Feeding occurs in the leaf cushion at the base of the needle. The needle is the only tissue in hemlock with resin canals that store terpenoids. The needle and leaf cushion of both the current and previous years’ growth were analyzed separately over a 1-yr period to examine the variation of terpenoid composition in space and time. Terpenoids were quantified by using headspace solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS). New growth needles and leaf cushions do not resemble the previous year’s growth either visually or in chemical composition until October/November, when the adelgid breaks estivation and begins feeding. Nearly all of the 23 terpenoids present exceeding 0.1% varied significantly either temporally or spatially, usually with complex interactions. Ordination and factor analysis revealed that terpenoids are less variable in mature leaf cushions than in young tissue. By entering a nonfeeding diapause during the late spring and summer, HWA avoids the unstable, variable levels of terpenoids in the immature leaf cushion and needles.  相似文献   

3.
The role of xanthine oxidase (XO) in the defense response of wheat (Triticum aestivum L.) against the Russian wheat aphid (RWA) (Diuraphis noxia) was studied. Xanthine oxidase catalyzes the oxidation of hypoxanthine to xanthine to uric acid, and oxygen radicals that are formed as a by-product at both of these oxidation steps may participate in plant defense reactions. A resistant wheat cultivar (Tugela DN), and a close isogenic susceptible cultivar (Tugela), were infested with 20–30 aphids per plant before inhibiting xanthine oxidase by adding allopurinol as a soil drench to the resistant plants. Increases in H2O2 content were detected early after infestation in the resistant wheat, and the downstream defense related responses, chitinase and peroxidase activities, were selectively induced by RWA infestation. These downstream defense responses were substantially inhibited in allopurinol treated-resistant wheat, presumably as a response to inhibition of XO, and superoxide dismutase (SOD). We conclude that the production of active oxygen species through the XO system plays an important role in the induction of defense reactions in wheat against the RWA.  相似文献   

4.
Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.  相似文献   

5.
Gas sensors made of flame-synthesized Zn-doped γ-Fe2O3 nanoparticles were found to have high sensitivity and high aging resistance. Zinc-doped γ-Fe2O3 nanoparticles and microparticles were synthesized by flame spray pyrolysis (FSP). Gas sensors were fabricated with as-synthesized particles, and with particles that had been annealed. The sensors’ response to acetone vapor and H2 was measured as fabricated, and measured again after the sensors were aged for three days. The sensors made from as-synthesized particles showed a gas sensing sensitivity 20 times higher than the literature value. However, sensors made of microparticles lost their sensing ability after three days of aging; sensors made of nanoparticles retained their gas sensing capability after aging. Sensors made of annealed particles did not have significant gas sensing capabilities. Analysis using the William and Hall method showed that the microstrains decreased significantly in both H2/O2 and H2/Air flame synthesized particles after annealing. The results showed that sensors made of flame-synthesized particles have much higher sensitivity than sensors made of particles previously reported. Especially, sensors made of flame-synthesized nanoparticles are resistant towards aging. This aging resistance may be attributed to the particles’ ability to retain their microstrains.  相似文献   

6.
Ethylene Production and Peroxidase Activity in Aphid-Infested Barley   总被引:8,自引:0,他引:8  
The purpose of this work was to investigate whether ethylene is involved in the oxidative and defensive responses of barley to the aphids Schizaphis graminum (biotype C) and Rhopalophum padi. The effect of aphid infestation on ethylene production was measured in two barley cultivars (Frontera and Aramir) that differ in their susceptibility to aphids. Ethylene evolution was higher in plants infested for 16 hr than in plants infested for 4 hr in both cultivars. Under aphid infestation, the production of ethylene was higher in cv. Frontera than in Aramir, the more aphid susceptible cultivar. Ethylene production also increases with the degree of infestation. Maximum ethylene evolution was detected after 16 hr when plants were infested with 10 or more aphids. Comparing the two species of aphids, Schizaphis graminum induced more ethylene evolution than Rhopalosiphum padi. Infestation with S. graminum increased hydrogen peroxide content and total soluble peroxidase activity in cv. Frontera, with a maximum level of H2O2 observed after 20 min of infestation and the maximum in soluble peroxidase activity after 30 min of infestation. When noninfested barley seedlings from cv. Frontera were exposed to ethylene, an increase in hydrogen peroxide and in total peroxidase activity was detected at levels similar to those of infested plants from cv. Frontera. When noninfested plants were treated with 40 ppm of ethylene, the maximum levels of H2O2 and soluble peroxidase activity were at 10 and 40 min, respectively. Ethylene also increased the activity of both cell-wall-bound peroxidases types (ionically and covalently bound), comparable with infestation. These results suggest that ethylene is involved in the oxidative responses of barley plants induced by infestation.  相似文献   

7.
The chiral phosphazene copolymers {[NP(O2C12H8)]0.9[NP(O2C20H12)]0.1} (1) and {[NP(O2C12H8)]0.9[NP(O2C20H10Br2)]0.1} n (2) [(O2C12H8) = 2,2′-dioxy-1,1′-biphenyl; (O2C20H12) = R-2,2′-dioxy-1,1′-binaphthyl and (O2C20H10Br2) = R-6,6′-dibromo-2,2′-dioxy-1,1′-binaphthyl] were prepared by sequential substitution from [NPCl2] n and the corresponding dihydroxy-biphenyl or binaphthyl reagents in the presence of Cs2CO3 and K2CO3. The reaction of (2) with tBuLi in THF, followed by addition of PPh2Cl and a treatment with SiHCl3/PPh3 to eliminate any oxidized OC6H4P(O)Ph2 groups, gave the phosphine containing copolymer {[NP(O2C12H8)]0.9[NP(O2C20H10[PPh2]2)]0.1} n (3), that was used as a chiral ligand to support [Ru(p-cymene)Cl] complexes. The resulting catalyst was active for hydrogen transfer from isopropyl alcohol to acetophenone but the placement of the Ru centers in the 6,6′-positions of the binaphthoxyphosphazene units induced no enantioselectivity. Dedicated to Professor Christopher Allen.  相似文献   

8.
Systemically Induced Plant Volatiles Emitted at the Time of “Danger”   总被引:8,自引:0,他引:8  
Feeding by Pieris brassicae caterpillars on the lower leaves of Brussels sprouts (Brassica oleracea var. gemmifera) plants triggers the release of volatiles from upper leaves. The volatiles are attractive for a natural antagonist of the herbivore, the parasitoid Cotesia glomerata. Parasitoids are attracted only if additional damage is inflicted on the systemically induced upper leaves and only after at least three days of herbivore feeding on the lower leaves. Upon termination of caterpillar feeding, the systemic signal is emitted for a maximum of one more day. Systemic induction did not occur at low levels of herbivore infestation. Systemically induced leaves emitted green leaf volatiles, cyclic monoterpenoids, and sesquiterpenes. GC-MS profiles of systemically induced and herbivore-infested leaves did not differ for most compounds, although herbivore infested plants did emit higher amounts of green leaf volatiles. Emission of systemically induced volatiles in Brussels sprouts might function as an induced defense that is activated only when needed, i.e., at the time of caterpillar attack. This way, plants may adopt a flexible management of inducible defensive resources to minimize costs of defense and to maximize fitness in response to unpredictable herbivore attack.  相似文献   

9.
A method for estimating absolute concentrations of C2H5 and H radicals in hydrocarbon diffusion flames is proposed and substantiated. Concentration profiles of C2H5 and H on the flame axis are obtained. In the method proposed, the concentration of C2H5 is determined from the equality of two quantities — the rate of loss of n-butane by diffusion and the rate of its formation by recombination of two C2H5 radicals. The concentration of H radicals is determined from the relation between the ratio C2H5/H and experimental profiles of C2H4, C2H6, and O2. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 6, pp. 13–20, November–December, 2007.  相似文献   

10.
Two mesoporous material Ni/γ-Al2O3 catalysts were prepared and characterized by ICP-AES, XRD, and TPR. The differences in reaction activity between Ni-in-Al2O3 and Ni-on-Al2O3 were investigated for hydrotreating of crude 2-ethylhexanol. The results show that the Ni species (Ni-on-Al2O3) exhibit excellent hydrogenation activities at a wide range of H2 pressure and space velocity, while the Ni species (Ni-in-Al2O3) exhibit similar activities with those of Ni-on-Al2O3 only at higher H2 pressure and lower space velocity. Due to the presence of extensively exposed Ni species on the Ni-on-Al2O3 catalyst, its hydrogenation performance was increased significantly because of the low interphase mass transfer resistance.  相似文献   

11.
Oxidative dehydrogenation of n-butene to 1,3-butadiene over ZnFe2O4 catalyst mixed with Cs x H3−x PW12O40 heteropolyacid (HPA) was performed in a continuous flow fixed-bed reactor. The effect of Cs x H3−x PW12O40 addition on the catalytic performance of ZnFe2O4 was investigated. Cs x H3−x PW12O40 itself showed very low catalytic performance in the oxidative dehydrogenation of n-butene. However, addition of small amount of Cs x H3−x PW12O40 into ZnFe2O4 enhanced the catalytic performance of ZnFe2O4 catalyst. The catalytic performance of ZnFe2O4-Cs x H3−x PW12O40 mixed catalysts was closely related to the surface acidity of Cs x H3−x PW12O40. Among the catalysts tested, ZnFe2O4-Cs2.5H0.5 PW12O40 mixed catalyst showed the best catalytic performance. Strong acid strength and large surface acidity of Cs2.5H0.5PW12O40 was responsible for high catalytic performance of ZnFe2O4-Cs2.5H0.5PW12O40 mixed catalyst. Thus, Cs2.5H0.5PW12O40 could be utilized as an efficient promoter and diluent in formulating ZnFe2O4 catalyst for the oxidative dehydrogenation of n-butene.  相似文献   

12.
Ce X Zr1−X O2 catalysts were prepared by a sol-gel method, and H3PW12O40/Ce X Zr1−X O2 catalysts were then prepared by an impregnation method. Both catalysts were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide in a batch reactor. NH3-TPD experiments were carried out to investigate the effect of acidity on the catalytic performance of Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2. Catalytic performance of Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2 was closely related to the acidity of the catalysts. The amount of dimethyl carbonate produced over both Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2 catalysts increased with increasing acidity of the catalysts. This indicates that acidity of the catalyst played a key role in determining the catalytic performance of Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2 in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Catalytic activity of H3 PW12O40/Ce X Zr1−X O2 was higher than that of the corresponding Ce X Zr1−X O2. The enhanced catalytic performance of H3 PW12O40/Ce X Zr1−X O2 was attributed to the Br?nsted acid sites provided by H3PW12O40.  相似文献   

13.
The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The impacts of impregnation and bleaching on the varnish layer hardness of Oriental beech (Fagus orientalist L.) wood were investigated. A number of bleaching combinations {[NaOH−H2O2], [NaOH−Ca(OH)2−H2O2], [NaOH−MgSO4−H2O2] [NaHSO3−H2C2O4], [NaSiO3−H2O2], [KMnO4+NaHSO3+H2O3]} were applied at 18% concentration for bleaching to both impregnated and unimpregnated specimens of Oriental beech wood. Subsequently, water-based (WB) varnish was coated over the samples and the varnish layer hardness values were determined in accordance with ASTM D 4366-95. All of the chemicals used for bleaching reduced the surface hardness. However, after varnish coating, the hardness of most samples was similar to that of the varnish-coated natural (control) samples.  相似文献   

15.
Plants respond to insect herbivory by producing dynamic changes in an array of defense-related volatile and nonvolatile secondary metabolites. A scaled response relative to herbivory levels and nutrient availability would be adaptive, particularly under nutrient-limited conditions, in minimizing the costs of expressed defensive pathways and synthesis. In this study, we investigated effects of varying nitrogen (N) fertilization (42, 112, 196, and 280 ppm N) on levels of cotton plant (Gossypium hirsutum) phytohormones [jasmonic acid (JA) and salicylic acid (SA)], terpenoid aldehydes (hemigossypolone, heliocides H1, H2, H3, and H4), and volatile production in response to beet armyworm (Spodoptera exigua) herbivory. Additional bioassays assessed parasitoid (Cotesia marginiventris) host-searching success in response to cotton plants grown under various N fertilizer regimes. At low N input (42 ppm N), herbivore damage resulted in significant increases in local leaf tissue concentrations of JA and volatiles and in systemic accumulation of terpenoid aldehydes. However, increased N fertilization of cotton plants suppressed S. exigua-induced plant hormones and led to reduced production of various terpenoid aldehydes in damaged mature leaves and undamaged young leaves. While increased N fertilization significantly diminished herbivore-induced leaf volatile concentrations, the parasitism of S. exigua larvae by the parasitoid C. marginiventris in field cages did not differ among N treatments. This suggests that, despite significant N fertilization effects on herbivore-induced plant defenses, at short range, the parasitoids were unable to differentiate between S. exigua larvae feeding on physiologically different cotton plants that share large constitutive volatile pools releasable when damaged by herbivores.  相似文献   

16.
The kinetic behavior in the direct synthesis of H2O2 with Pd–Me (Me = Ag, Pt) catalysts prepared by depositing the noble metals by electroless plating deposition (EPD) or deposition–precipitation (DP) methods on α-Al2O3 asymmetric ceramic membrane with or without a further surface coating by a carbon thin layer is reported. The effect of the second metal with respect to Pd-only catalysts considerably depends on the presence of the carbon layer on the membrane support. Several factors in the preparation of these membranes as well as the reaction conditions (temperature, concentration of Br, pH) determine the selectivity in H2O2 formation, influencing the rate of the consecutive reduction of H2O2 (which is faster with respect to H2O2 decomposition on the metal surface) and/or of direct H2 + O2 conversion to H2O. Defective Pd sites are indicated to be responsible for the two unselective reactions leading to water formation (parallel and consecutive to H2O2 formation), but the rate constants of the two reactions are differently influenced from the catalytic membrane characteristics. Increasing the noble metal loading on the membrane not only increases the productivity to H2O2, but also the selectivity, due to the formation of larger, less defective, Pd particles.  相似文献   

17.
Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge from this and related reviews is that the effects of elevated CO2 and O3 on plant chemistry and ecological interactions are highly context- and species-specific, thus frustrating attempts to identify general, global patterns. Many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated, ultimately influencing terrestrial carbon sequestration and feeding back to influence atmospheric composition. Thus, the discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems. Future research should seek to increase the diversity of natural products, species, and biomes studied; incorporate long-term, multi-factor experiments; and employ a comprehensive “genes to ecosystems” perspective that couples genetic/genomic tools with the approaches of evolutionary and ecosystem ecology.  相似文献   

18.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

19.
Pristine activated carbon (AcC) was oxidized by H2O2 under ultrasonic conditions. Compared with pristine AcC, the H2O2-oxidized AC possesses higher accumulation ability to trace levels of Cd2+. Based on this, a highly sensitive, simple and rapid electrochemical method was developed for the determination of Cd2+. In 0.01 mol L−1 HClO4 solution, Cd2+ was effectively accumulated at the surface of H2O2-oxidized AcC modified paste electrode, and then reduced to Cd under −1.10 V. During the following potential sweep from −1.10 to −0.50 V, reduced Cd was oxidized and a sensitive stripping peak appears at −0.77 V. The stripping peak current of Cd2+ changes linearly with concentration over the range 5.0 × 10−8 to 5.0 × 10−6 mol L−1. The limit of detection was found to be 3.0 × 10−8 mol L−1 for 2-min accumulation. Finally, this new sensing method was successfully used to detect Cd2+ in waste water samples.  相似文献   

20.
The Sb2O3 doping lead-free glass in Bi2O3-B2O3-BaO ternary system were prepared in the composition of several different subsystem, and the glass powder was produced through the process of water quenching. Glass transition temperatures (T g ), glass soften temperatures(T s ), the volume resistivity (ρ) in the temperature range of 80–200°C, and linear thermal coefficients of expansion in the temperatures range of 25–300°C (α25–300) were measured for subsystems along with the different ratio of Bi2O3, B2O3 and BaO. For these subsystems, T g ranged from 458 to 481°C, and T s ranged from 490 to 512°C, both decreasing with the increasing of Bi2O3/B2O3 ratio, and increasing with the increasing of BaO/B2O3 ratio. The measured α25–300 ranged from 65.3 to 76.3 × 10−7 K−1, with values increasing with increasing Bi2O3/B2O3 and BaO/B2O3 ratio. The volume resistivity remains at a high standards, which may caused by it’s non-alkali composition, and it fluctuated from 1013 to 1011 Ω cm with the temperature varied from 80–200°C. The structure of Bi2O3-B2O3-BaO ternary leadfree glass system was mearsured by FT-IR. The IR studies indicate that these glasses are made up of [BiO6], [BO3], and [BO4] basic structural units, and it appears that Ba2+ acts as a glass-modifier in this ternary system, but the Bi3+ has entered the glass network when it is in relative high content so as to change the α25–300, T s and T g .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号