首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fire simulation in road tunnels   总被引:19,自引:0,他引:19  
The catastrophic tunnel fires since the year 1999 and a series of accidents in some tunnels in the summer of 2001 triggered extensive discussions and proposals relating to tunnel safety. When a fire occurs in a tunnel, and in absence of sufficient air supply, large quantities of smoke are generated, filling the vehicles and any space available around them. Unless a strong flow is created and maintained, hot gases and smoke migrate in all directions. With a weak airflow, smoke forms a layer along the tunnel ceiling and can flow against the direction of forced ventilation, interfering with personal evacuation. This paper shows the results of a computer fire simulation in a tunnel and the results of this simulation: air velocity, air temperature and wall temperature in the case of fire. The simulation started before the emergency ventilation system is activated and continued with the fans activated to control the smoke.  相似文献   

2.
通过隧道火灾模型试验,研究纵向通风对竖井排烟效果及隧道内纵向烟气温度分布的影响。试验考虑不同火源热释放速率和纵向风速。结果表明:纵向风速对正庚烷池火热释放速率存在影响,对于较小正庚烷池火(≤11 cm),火源热释放速率基本不随纵向风速而改变;对于较大正庚烷池火(≥14 cm),火源热释放率随风速的增加先降低后基本保持恒定。此外,当隧道内风速较小时,竖井内烟气附壁排出,竖井后方烟气温度较低,控烟效果较好;当隧道内风速较大时,竖井内烟气出现边界分离,竖井后方温度升高,烟气蔓延距离增加,竖井排烟效果较差。因此,建议当竖井型隧道内发生火灾时,应尽量采用自然通风或较低的内部通风,避免较高风速。  相似文献   

3.
Three full-scale model experiments were conducted in a unidirectional tube, which is a part of a metro tunnel with one end connected to an underground metro station and the other end opened to outside in Chongqing, PR China. Three fire HRRs, 1.35 MW, 3 MW and 3.8 MW were produced by pool fires with different oil pan sizes in the experiments. Temperature distributions under the tunnel ceiling along the longitudinal direction were measured. At the same time, CFD simulations were conducted under the same boundary conditions with the experiments by FDS 5.5. In addition, more FDS simulation cases were conducted after the FDS simulation results agreed with the experimental results. The simulation results show that the smoke temperature and the decay rate of the temperature distribution under the tunnel ceiling along the longitudinal direction increase as HRR increases. The smoke exhausts effectively from the tunnel under mechanical ventilation system, whether the emergency vent is activated as a smoke exhaust or an air supply vent. The operation mode of the mechanical ventilation system depends on the evacuation route.  相似文献   

4.
城万二级公路白芷山隧道和八台山隧道为双向行车的大纵坡公路隧道,火灾后烟流控制难。采用火灾动力学计算软件FDS对其进行了火灾三维数值模拟,分析了仅火风压作用及0.5 m/s、1 m/s和-0.5 m/s控制风速作用下的烟流扩散和能见度的分布规律。结果表明:在大纵坡隧道中,火灾后仅靠火灾效应能引起火灾烟流的流动,其流动的规律是烟流从火源点流向高洞口方向,火灾烟流能完全从高洞口排出,而烟流向火源点下坡方向的蔓延距离仅在100 m左右;当风速为0.5 m/s时,烟流在火源两侧基本呈对称状蔓延;下坡方向的隧道中的烟流也因风速较小,产生的扰动比较小,这种烟流控制是最为合理,有利于灾害情况下逃生。因此,建议将白芷山隧道和八台山隧道的火灾控制风速取为0.5 m/s左右,且该速度应为自然风速、火风压引起的风速和风机提供风速的合速度。  相似文献   

5.
通过对海拔为4100m的高海拔隧道进行全尺寸火灾试验,揭示高海拔隧道火灾烟气下沉及温度场变化特征。试验采用三种不同尺寸火源(0.8m2、1.0m2、2.0m2),对隧道火灾烟气蔓延特征、火区最高温度、隧道拱顶纵向温度分布进行研究。试验研究结果表明:隧道火灾试验初期及燃烧稳定阶段,火源附近隧道上层烟气与下层冷空气分界明显,火灾后期烟气下沉严重;较小风速有利于高海拔隧道小规模火灾烟气逆流层纵向和垂向蔓延的控制。隧道火灾温度场研究表明:隧道火灾温升速率随火源热释放率增大而增加;火源附近20m范围内温度衰减速率较快,远火源区域隧道拱顶纵向温度衰减较慢,趋于平缓;通过对火源上方拱顶烟气温度分析,发现隧道火灾探测采用差温报警模式较定温报警模式更加有效,并得出10℃/min的温升速率可基本满足高海拔隧道小规模火灾的初期报警;隧道拱顶纵向温度分布规律导致火源远场烟气下沉严重而近火源区域烟气层化较好的特征。高海拔隧道火灾温度分布特性试验研究,可为高海拔隧道火灾动力特性研究提供依据,为高海拔隧道人员疏散逃生提供指导及建议。  相似文献   

6.
为研究5 km以上公路隧道超长距离全射流纵向排烟可行性与有效性,依托全长6 015 m的羊鹿山隧道,在不利于排烟的左线隧道(单向下坡)内开展20 MW现场火灾全射流纵向排烟试验。试验期间自然风速为1.0~1.6 m/s,与通风排烟方向相反,表现为排烟阻力。研究表明:左洞内开启6组射流风机时,洞内沿程风速约为3.5 m/s,开启12~15组风机时,下坡隧道内沿程风速约为5.5~7.0 m/s;20 MW油盘火试验从点火开始到烟气全部排出洞外的时间约为30 min。根据现场火灾排烟试验,对于羊鹿山隧道,在保证人员安全的情况下,采用全射流纵向排烟是可行的。  相似文献   

7.
Twelve tests were conducted to study the distribution of smoke temperature along the tunnel ceiling in the one-dimensional spreading phase, two tests in a large-scale tunnel and the other ten in full scale vehicular tunnels. The fire size and the height above the floor, the tunnel section geometry and longitudinal ventilation velocity varied in these tests. Experimental results showed that when the fire size was larger, the smoke temperature below the ceiling was higher, but it decayed faster while traveling down the tunnel. The longitudinal ventilation velocity seemed to take much influence on the smoke temperature decay speed downstream. A “barrier effect” was shown for the smoke temperature distribution of the upstream back layering. The smoke temperatures measured were higher upstream than downstream before the “barrier”, and were much lower and decreased faster along the tunnel ceiling after the “barrier”. The temperature and the traveling velocity of the upstream smoke flow decreased largely when the longitudinal ventilation velocity increased a bit. The dimensionless excess smoke temperature distributions along the tunnel ceiling in all tests fell into good exponential decay. But the decay speed along the tunnel seemed to be much larger in the large-scale tunnel than that in full-scale tunnels. The measured data on ceiling jet temperature decay along the tunnel was compared with predictions of Delichatsios's model, a model built based on small-scale tests, with hydraulic diameter introduced. Results showed that Delichatsisos’ model over estimated the decay speed of ceiling jet temperature for the downstream flow. However, good agreement was achieved between the measured data and the model predictions for the upstream back layering. All the experimental data presented in this paper can be further applied for verification of numerical models, bench-scale results and building new models on ceiling jet temperature distribution.  相似文献   

8.
We examined the exhaust performance of a hybrid ventilation strategy for maintaining a safe evacuation environment for tunnel users in a tunnel fire. The hybrid ventilation strategy combines the longitudinal ventilation strategy with the point ventilation strategy which is a type of transverse ventilation strategy. The model tunnel developed by this study was scaled to 1/5 the size of a full-scale tunnel. The model-scale experiment was performed taking into consideration Froude's law of similarity. Measurement items were the distribution of temperature and concentration of smoke inside the tunnel, longitudinal wind velocity, mass flow of smoke in the point ventilation duct, and the heat release rate of the fire source. The following main conclusions were obtained. The smoke height was constant even when varying the extraction rate of smoke from the ceiling vent. The backlayering length and critical velocity of the smoke flow in the hybrid strategy could be predicted by the methodology developed by using the longitudinal strategy. The hybrid strategy maintained a safe evacuation environment on both sides of the tunnel fire.  相似文献   

9.
隧道内火灾的热释放速率对火灾蔓延和烟气生成起着关键作用。影响热释放速率的关键参数包括:燃烧物特性、隧道形状、通风条件以及车辆流量。综述了几年来热释放速率对这些参数的依赖性所做的研究成果。设计了贝页斯概率模型来模拟火灾热释放速率受隧道形状以及纵向通风的影响,设计了定性模型来模拟火灾在类似海底隧道内从一个物体蔓延到另一个物体的情况,通风条件同样是纵向通风,并给出了此次研究的初步成果。  相似文献   

10.
公路隧道火灾人员逃生与控制风速关系密切。本研究基于PHOENICS软件,建立了矩形、圆形及马蹄形断面下二、三及四车道9种计算模型,选取了大客车(20 MW)及无载重货车(30 MW)2种火源释放率, 选取了2.0 m/s、2.5 m/s、3.0 m/s、3.5 m/s及4.0 m/s的入口风速共计40种主要常见火灾工况,考虑了纵向通风对人体极限温度承受值的影响,采用了杨涛修正的动态火源释放率曲线及周勇狄修正的克拉尼公式,选用了适当的人员逃生条件,给出了每种工况8个特征时刻的10个特征点的温度值及曲线图,给出了燃烧5 min、12 min、30 min后火源处的纵横断面温度云图及中轴面烟气云图,给出了对应于火源燃烧位置上下游8个特征位置下人员逃生的忍受时间与逃离时间。研究得出:在基于人员逃生条件下矩形断面隧道在火源释放率为20 MW时二车道控制风速为3.0 m/s,三、四车道均为2.5 m/s;30 MW时二、三、四车道控制风速均为3.5 m/s,圆形与马蹄形断面隧道在火源释放率为20 MW时二、三、四车道控制风速均为3.5 m/s,30 MW时二车道控制风速均为4.0 m/s,三、四车道均为3.5 m/s。在火灾发生1 min后,人员以1 m/s从火源上下游进行疏散均可安全逃生。  相似文献   

11.
A water system, consisting of several water mist nozzles, has been installed in a reduced-scale tunnel. Its effectiveness in blocking fire-induced smoke and heat is tested, with and without longitudinal ventilation. A total of 14 fire tests have been carried out, with 250 ml methanol in an iron tray (25 cm × 20 cm) as fuel. Temperatures have been measured by 30 thermocouples, located upstream and downstream of the fire location. The aim is to assess the effectiveness of the water system in preventing smoke spread and in reducing the temperature in the tunnel. Interaction of the water with the fire is avoided. The impact of water pressure, ventilation velocity and nozzle arrangement on the effectiveness in smoke blocking and temperature reduction is discussed. The result confirms that the water system effectively reduces the temperatures and prevents smoke spreading in the absence of longitudinal ventilation. However, strong longitudinal ventilation (0.8 m/s ventilation velocity in the reduced-scale tunnel, corresponding to critical velocity in full-scale (1:10) tunnel) reduces the effectiveness in blocking the smoke spreading by the water system, although the temperature reduction downstream the water system remains in place. Higher water pressure makes the cooling effect stronger, because more and smaller water droplets are injected into the tunnel. For a given level of water pressure level, the impact of the nozzle row configuration is small in the tests.  相似文献   

12.
The present article highlights the performance of natural roof ventilation systems and its effects on tunnel fire flow characteristics. Numerical analysis is performed using Large Eddy Simulations (LES) to predict fire growth rate and smoke movement in tunnel with single and multiple roof openings. The smoke venting performance of ceiling vents are investigated by varying the vent size and fire source locations. The critical parameters such as mass flow rate through ceiling openings, smoke traveling time and fire growth patterns are presented. The ceiling openings are effective in transferring hot gases and reduces the longitudinal smoke velocity. The heat source and ceiling vent locations significantly affects the vent performance and smoke behavior in tunnel. The present results are in good agreement with the experimental results available in literature.  相似文献   

13.
Since the prediction of ‘critical velocity’ is important to control the smoke in tunnel fires, many researches have been carried out to predict critical velocity with various fire sizes, tunnel shape, tunnel slope, and so forth. But few researches have been conducted to estimate critical ventilation velocity for varied burning rate by longitudinal ventilation, although burning rate of fuel is influenced by ventilation conditions. Therefore, there is a need to investigate the difference of upstream smoke layer (e.g., backlayering) between naturally ventilated heat release rate and varied heat release rate by longitudinal ventilation.In this study, the 1/20 reduced-scale experiments using Froude scaling are conducted to examine the difference of backlayering between naturally ventilated heat release rate and varied heat release rate by longitudinal ventilation. And the experimental results obtained are compared with numerical ones. Three-dimensional simulations of smoke flow in the tunnel fire with the measured burning rates have been carried out using Fire Dynamics Simulator; Ver. 406 code, which is developed by National Institute of Standards and Technology. They show a good degree of agreement, even if some deviation in temperature downstream of the fire is evident. Since ventilation velocity had a greater enhancing effect on the burning rate of fuel due to oxygen supply effect, the critical ventilation velocity should be calculated on the basis of varied HRR by ventilation velocity.  相似文献   

14.
In this work, a numerical 3D simulation of a longitudinal ventilation system (LVS) is developed to analyze the fire behaviour inside a road tunnel. The numerical modelling reproduces the Memorial Tunnel, a two-lane, 853 m long road tunnel, used for experimental purposes. On this tunnel, 98 full-scale fire ventilation tests with different ventilation systems were conducted, constituting the first significant experimental approach to analyze fire incidents inside road tunnels. A total number of 24 reversible jet fans were installed in groups of three, nearly equally spaced over the length of the tunnel, and cantilevered from the ceiling of the tunnel.

The validation of a numerical model is developed in the present paper. For that purpose, the behaviour of the smoke generated during a fire incident inside a road tunnel is predicted and compared with previous experimental data collected in the Memorial Tunnel Project. The smoke evolution and the performance of the LVS is simulated with a commercial code, FLUENT, which allows 3D unsteady simulations of the Navier–Stokes equations for multispecies mixtures of gases. A sufficient mesh density was introduced for the spatial discretization in order to obtain accurate results in a reasonable CPU time. Hence, typical ratios between total number of cells and the overall tunnel length were employed in the modelling. As a result, good agreement was achieved in all the tested cases, defining an accurate methodology to predict the performance of a LVS in case of fire inside a tunnel.  相似文献   


15.
计算地铁区间列车火灾人员所需安全疏散时间,与模拟所得可用安全疏散时间对比,确定区间人员疏散策略及通风临界时间。研究表明:地铁列车外部中间位置着火停靠在区间,火源功率分别为5、7.5、10 MW,需启动纵向通风排烟系统,组织人员向上风向疏散。火源功率为5 MW,纵向通风风速为2.0 m/s时,150~180 s 开始通风可保证人员安全疏散;火源功率为7.5、10 MW,纵向通风风速分别为2.4、2.6 m/s 时,120~180 s 开始通风可保证人员安全疏散。风机由静止转换为事故工况的通风临界时间为120 s,由运转转换为事故工况的通风临界时间为90 s。  相似文献   

16.
现有的公路隧道火灾通风计算方法,是按正常运营通风设计的风机配置,考虑火灾发生后一定数量风机的损坏,计算火灾情况下能够提供的隧道内风速,用该风速和阻止烟流逆流的临界风速比较来验算火灾时期通风的安全性。但在公路隧道的火灾过程中,火灾烟流阻力确实存在,且对隧道火灾时的烟气流动影响较大。本文将烟流阻力引进传统的公路隧道通风计算中,给出了公路隧道火灾通风时的改进计算公式。通过算例,证明了改进的计算方法更符合隧道火灾时实际概况,为隧道火灾时的通风控制提供了科学依据。  相似文献   

17.
张毅 《消防科学与技术》2022,41(10):1472-1476
摘 要:基于当下灭火救援领域中的突发事件,提出灭火救援专业知识智能匹配算法,该算法基于自然语言处理和注意力机制计算案件描述和消防预警信息之间的语义关系,从而实现相关灭火救援专业知识的匹配。首先基于自然语言处理的方法学习句粒度级别的语义信息,然后基于注意力机制学习词粒度级别的语义信息,最后基于两个级别语义信息的交互,根据信息之间局部差异推断两个句子之间的关系。试验结果表明:该算法具有优异的性能,能够同时从词和句两个粒度上更准确地理解句子,实现基于案件描述的灭火救援专业知识智能匹配。  相似文献   

18.
搭建了1:10的缩尺寸隧道模型,考虑不同火源功率和纵向风速开展了纵向通风下隧道内重石脑油燃烧的试验研究,测量了隧道内顶棚下方纵向温度分布,并量化了火焰的倾斜角度。结果表明:随着纵向通风风速的增加,隧道内温度整体呈降低趋势,顶棚下方最高温度逐渐减小,进而提出了纵向通风下隧道内重石脑油燃烧时顶棚下方最高温度的估算模型。火焰倾斜角度随纵向风速的增加而呈增加趋势。当纵向风速较低(小于1 m/s)时,随着纵向风速的增加火焰倾斜角度明显增大;当纵向风速较大(大于1 m/s)时,纵向风速对火焰倾斜角度的影响不明显。  相似文献   

19.
火灾时隧道内烟流流动状态试验研究   总被引:6,自引:1,他引:6  
通过大比例火灾模型试验,研究火灾时隧道内烟流流动状态、烟流速度变化以及通风对烟流流动状态的影响。试验模型隧道长100m,内径1.8m。火源采用燃烧床盛放油料模拟,试验中设定了A、B、C三个火灾规模用以模拟实际隧道火灾场景。试验结果表明,点火后,隧道内火区、火区下游烟流速度在2~8min内增加很快,明显大于点火前风速,且其增幅随通风风速、火灾规模的不同而变化。同时,随着火势的逐渐减弱隧道内烟流速度也逐渐减小,并趋于初始风速。试验结果建议对于一般的限制或禁止油罐车通行的隧道,火灾时,隧道内应尽快建立起2~3m/s的纵向风流以抑止烟气的逆流。  相似文献   

20.
为了掌握长大公路隧道内的火灾行为,提升特长公路隧道的火灾安全性,进行了水平通道中不同纵向通风强度下,一氧化碳浓度和温升空间分布关系的1∶6大尺寸火灾模型试验,并与Newman的研究结论进行了对比。试验在长66 m,宽1.5 m,高1.3 m的模型隧道中进行的。研究结果发现,Newman的研究结论并不适用于所有通风条件。一氧化碳浓度和温升的纵向分布和竖向分布都不尽相同。在纵向分布方向,烟流的温升随着远离火源的纵向距离的增加而显著衰减,然而一氧化碳浓度却并没有随着纵向距离的增加而发生改变。一定强度的纵向通风使得温升沿纵向的衰减率变得缓慢,然而,纵向通风对一氧化碳浓度的纵向分布特性影响甚微。在无纵向通风的情况下,相对于温升来讲,一氧化碳浓度随高度减小而衰减的速率明显比温升要慢。然而,随着纵向通风风速的增加,一氧化碳浓度和温升的竖向分布呈现出了很好的相似性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号