首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio(p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°.Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°,75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.  相似文献   

2.
Mist/steam cooling by a row of impinging jets   总被引:2,自引:0,他引:2  
Mist/steam cooling has been studied to augment internal steam-only cooling for advanced turbine systems. Water droplets generally less than 10 μm are added to 1.3 bar steam and injected through a row of four round jets onto a heated surface. The Reynolds number is varied from 7500 to 22,500 and the heat flux varied from 3.3 to 13.4 kW/m2. The mist enhances the heat transfer along the stagnation line and downstream wanes in about 3 jet diameters. The heat transfer coefficient improves by 50-700% at the stagnation line for mist concentrations 0.75-3.5% by weight. Off-axis maximum cooling occurs in most of the mist/steam flow but not in the steam-only flow. CFD simulation indicates that this off-axis cooling peak is caused by droplets’ interaction with the target walls.  相似文献   

3.
An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was measured by IR camera.The blockage ratio(e/Dh) of the tested channel is 0.078 and the aspect ratio(W/H) is fixed at3.0.Influences of the rib pitch-to-height ratio(P/e) and the rib angle on heat transfer for steam cooling were investigated.In this paper,the Reynolds number(Re) for steam ranges from 3070 to 14800,the rib pitch-to-height ratios were 8,10 and 12,and rib angles were 90°,75°,60°,and 45°.Based on results above,we have concluded that:In case of channels with 90° tranverse ribs,for larger rib pitch models(the rib pitch-to-height ratio=10 and12),areas with low heat transfer coefficient in front of rib is larger and its minimum is lower,while the position of the region with high heat transfer coefficient nearly remains the same,but its maximun of heat transfer coefficient becomes higher.In case of channels with inclined ribs,heat transfer coefficients on the surface decrease along the direction of each rib and show an apparent nonuniformity,consequently the regions with low Nusselt number values closely following each rib expand along the aforementioned direction and that of relative high Nusselt number values vary inversely.For a square channel with 90° ribs at Re= 14800,wider spacing rib configurations(the rib pitch-to-height ratio=10 and 12) give an area-averaged heat transfer on the rib-roughened surface about8.4%and 11.4%more than P/e=8 model,respectively;for inclined parallel ribs with different rib angles at Re=14800,the area-averaged heat transfer coefficients of 75°,60° and 45° ribbed surfaces increase by 20.1%,42.0%and 44.4%in comparison with 90° rib angle model.45° angle rib-roughened channel leads to a maximal augmentation of the area-averaged heat transfer coefficient in all research objects in this paper.  相似文献   

4.
Effects of droplet characteristics of mist/air cooling on heat transfer for three pin-fin structures are investigated. The round-tip pin-fin structure is newly proposed with partial detachment from one endwall with a round-shaped tip structure. A flat-tip pin-fin with partial detachment and a traditional pin-fin with full attachment serve as references. Reynolds-averaged Navier-Stokes equations and the shear-stress-transport turbulence model are applied. Influences of initial mist temperature, initial mist diameter and initial mist velocity are analyzed in the Reynolds number range 15,000 to 50,000. The round-tip pin-finned channel has highest heat transfer coefficient and lowest pressure loss among the structures. Heat transfer enhancement increases first gradually and then decreases sharply with increasing initial mist diameter but an optimal diameter exists for the highest Nusselt numbers. Nusselt number decreases monotonically with increasing initial mist temperature. Droplet movement and heat transfer are nearly independent of initial mist velocity.  相似文献   

5.
Heat transfer and flow characteristics of six ribbed channels of square cross section having different rib structure are computed with the objective of improving heat transfer in the lee-side of the ribs. Six ribs are installed on the bottom walls of each channel. The rib pitch-to-height ratio (P/e) is 10. Details of the turbulent flow structure, temperature fields, local heat transfer coefficients, flow friction coefficients, normalized heat transfer rates, and normalized friction factors are reported. The simulations use the v2f turbulence model and inlet Reynolds number range of 8,000 to 24,000. A uniform heat flux is appropriately applied on all surfaces. The heat transfer performances features of the ribbed channels of various designs are evaluated and compared. A case with an inclined lee-side structure having an inclination angle of 160° yields the highest Nusselt number and friction factor, about 4.6%–6.4% higher than those with rectangular ribs, and 7.1%–9.0% higher heat transfer when the heated-surface area is considered. Increased pressure drop is kept within certain limits when considering the balance between cooling effectiveness and pressure loss for the comparisons. Though having the best heat transfer, the case with the inclined back-wall geometry of the ribs does not present the better overall thermal performance due to the higher friction. The heat transfer enhancement is more prominent when improvements of the poor heat transfer regions downstream of the rib are computed with the surface area change excluded. A conclusion to be drawn is that lee-side improvement of heat transfer can be effected with suitable design of the rib downstream side. This finding can be applied to improvement of turbine airfoil cooling.  相似文献   

6.
This paper focuses on the heat transfer analysis of compact heat exchangers through artificial neural network (ANN). The ANN analysis includes heat transfer coefficient, pressure drop and Nusselt number in the compact heat exchangers by using available experimental results in a case study. In this study, data sets are established in 15 different test channel configurations. A feed‐forward back‐propagation algorithm is used in the learning process and testing the network. The learning process is applied to correlate the heat transfer analysis for different ratios of rib spacing and height, various Reynolds numbers, different inlet–outlet temperatures, heat transfer areas and hydraulic diameters. Various hidden numbers of the network are trained for the best prediction of the heat transfer analysis. Heat transfer coefficient, pressure drop and Nusselt number values are predicted by the network algorithm. The results are then compared with the experimental results of the case. The trained ANN results perform well in predicting the heat transfer coefficient, pressure drop and Nusselt number with an average absolute mean relative error of less than 6% compared with the experimental results for staggered cylindrical ribbed and staggered triangular ribbed of test channels in the case study. The ANN approach is found to be a suitable method for heat transfer analysis in compact heat exchangers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The present study investigates heat transfer and pressure drop in flows through ribbed channel for application to turbine blade cooling. The experiments are conducted for different cross-sections, for Reynolds number from 20 to 60 × 103. Local heat transfer coefficients are obtained using a transient thermochromic liquid crystal (TLC) technique. Detailed knowledge of the local heat transfer coefficient is essential to analyze thermal stresses in turbine components, while the combined effect of heat transfer and pressure drop should be taken into account for a proper cooling system design. As a compromise has always to be found, a new design criteria to choose the most appropriate solution for typical turbomachinery parameters is inferred and shown. Entrance effects for ribbed channels are also studied, as the common hypothesis of fully developed flow is rarely satisfied in real engine geometries; relevant results are revealed.  相似文献   

8.
A numerical work has been conducted to examine turbulent periodic flow and heat transfer characteristics in a three dimensional square-duct with inline 60° V-shaped discrete thin ribs placed on two opposite heated walls. The isothermal-flux condition is applied only to the upper and lower duct walls while the two sidewalls are insulated, similar to internal passage cooling of gas turbine blades. The computations are based on the finite volume method with the SIMPLE algorithm for handling the pressure–velocity coupling. Air is the working fluid with the flow rate in terms of Reynolds numbers ranging from 10,000 to 25,000. The numerical result is validated with available square-rib measured data and found to agree well with measurement. The computation reveals that the ribbed duct flow is fully developed periodic flow and heat transfer profiles at about x/D = 7–11 downstream of the inlet. Effects of different rib height to duct diameter ratios, BR, on thermal characteristics for a periodic ribbed duct flow are investigated. It is found that a pair of counter-rotating vortices (P-vortex) caused by the rib can induce impingement/attachment flows on the walls leading to greater increase in heat transfer over the test duct. In addition, the rise of BR values leads to the increase in heat transfer and friction loss. The maximum thermal performance is around 1.8 for the rib with BR = 0.0725 where the heat transfer rate is about 4.0 times above the smooth duct at lower Reynolds number.  相似文献   

9.
Particle image velocimetry (PIV) experiments have been carried out to study the correlation between the high-Reynolds number turbulent flow and wall heat transfer characteristics in a two-pass square channel with a smooth wall and a 90° rib-roughened wall. Detailed averaged velocity distributions and turbulent kinetic energy for both the main and the secondary flows are given for a representative Reynolds number (Re) of 30,000. The PIV measurement results were compared with the heat transfer experimental data of Ekkad and Han [International Journal of Heat Mass Transfer 40 (11) (1997) 2525-2537]. The result shows that the flow impingement is the primary factor for the two-pass square channel heat transfer enhancement rather than the flow turbulence level itself. The characteristics of the secondary flow, for example, vortex's shape, strength, rotating-direction and positions, are closely correlated with the wall heat transfer enhancements for both smooth and ribbed wall two-pass square channels. The rib-induced flow turbulence increases the heat transfer mainly because of the enhanced local flow impingement near the rib.  相似文献   

10.
Individual and interacting effects of uniform flow, plane shear, and near-wall proximity on spherical droplet heat and mass transfer have been assessed for low Reynolds number conditions beyond the creeping flow regime. Validated resolved volume simulations were used to compute heat and mass transfer surface gradients of two-dimensional axisymmetric droplets and three-dimensional spherical droplets near planar wall boundaries for conditions consistent with inhalable aerosols (5 ? d ? 300 μm) in the upper respiratory tract. Results indicate that planar shear significantly impacts droplet heat and mass transfer for shear-based Reynolds numbers greater than 1, which occur for near-wall respiratory aerosols with diameters in excess of 50 μm. Wall proximity is shown to significantly enhance heat and mass transfer due to conduction and diffusion at separation distances less than five particle diameters and for small Reynolds numbers. For the Reynolds number conditions of interest, significant non-linear effects arise due to the concurrent interaction of uniform flow and shear such that linear superposition of Sherwood or Nusselt number terms is not allowable. Based on the validated numeric simulations, multivariable Sherwood and Nusselt number correlations are provided to account for individual flow characteristics and concurrent non-linear interactions of uniform flow, planar shear, and near-wall proximity. These heat and mass transfer correlations can be applied to effectively compute condensation and evaporation rates of potentially toxic or therapeutic aerosols in the upper respiratory tract, where non-uniform flow and wall proximity are expected to significantly affect droplet transport, deposition, and vapor formation.  相似文献   

11.
Burak Markal  Mete Avci 《传热工程》2017,38(16):1415-1428
This study focuses mainly on the prediction of saturated flow boiling heat transfer in microchannels. A wide range of experiments has been carried out with de-ionized water to obtain a comprehensive data set. Experiments of mass fluxes of 51–728.7 kg/m2s, wall heat fluxes of 36–221.7 kW/m2, vapor qualities of 0.01–0.69, liquid Reynolds number of 7.72–190, aspect ratios of 0.37–5.00 (with a constant hydraulic diameter of 100 µm) and hydraulic diameters of 100–250 µm (for constant aspect ratio = 1). A new correlation including the aspect ratio effect is proposed to predict the heat transfer coefficient for saturated flow boiling in microchannels. The proposed correlation shows very good predictions with an overall mean absolute error of 16.9% and 86.4%, 96.2% and 99.5% of the predicted data falling within ±30, ±40 and ±50% error bands, respectively.  相似文献   

12.
Ribbing the internal passages of turbine blades with 45 deg inclined ribs is a common practice to achieve a good compromise between high heat transfer coefficients and not too large pressure drop penalties. Literature studies demonstrated that, for channels having a large aspect ratio, the effect of the secondary vortices induced by angled ribs is reduced and the heat transfer performance is degraded. In order to enhance the performance, a possible strategy consists in introducing one or more longitudinal ribs (intersecting ribs) aligned to the main direction of flow. The intersecting ribs cut the ribbed channel into separate sub-channels and markedly affect the secondary flows with consequent increases in heat transfer performance. Experiments were performed for a rectangular channel with a large aspect ratio (equal to five) and 45 deg inclined ribs, regularly spaced on one of the principal walls of the channel. The effect of one and two intersecting ribs on friction and heat transfer characteristics has been investigated. The ribbed surface of the channel has been electrically heated to provide a uniform heat flux condition over each inter-rib region. The convective fluid was air. Heat transfer experiments have been conducted by using the liquid crystal thermography. Results obtained for the ribbed channel without intersecting rib and with one/two intersecting ribs are compared in terms of dimensionless groups.  相似文献   

13.
A numerical model was used to investigate gas-phase entropy generation during transient methanol droplet combustion in a low-pressure, zero-gravity, air environment.A comprehensive formulation for the entropy generation in a multi-component reacting flow is derived. Stationary methanol droplet combustion in a low ambient temperature (300 K) and a nearly quiescent atmosphere was studied and the effect of surface tension on entropy generation is discussed. Results show that the average entropy generation rate over the droplet lifetime is higher for the case that neglects surface tension. Entropy generation during the combustion of methanol droplets moving in a high-temperature environment (1200 K), as seen in a typical spray combustion system, is also presented. Entropy generation due to chemical reaction increases and entropy generation due to heat and mass transfer decreases with an increase in initial Reynolds number over the range of initial Reynolds numbers (1–100) considered. Contributions due to heat transfer and chemical reaction to the total entropy generation are greater than the contribution due to mass transfer. Entropy generation due to coupling between heat and mass transfer is negligible. For moving droplets, the lifetime averaged entropy generation rate presents a minimum value at an initial Reynolds number of approximately 55.  相似文献   

14.
The flow and heat transfer in ribbed coolant passages of aspect ratios (AR) 1:1, 4:1, and 1:4 are numerically studied through the solution of the unsteady Reynolds averaged Navier–Stokes (URANS) equations. The URANS procedure, which utilizes a two equation kε model for the turbulent stresses, is shown to resolve large-scale bulk unsteadiness. The computations are carried out for a fixed Reynolds number of 25,000 and density ratio of 0.13, while the Rotation number is varied between 0.12 and 0.50.At higher rotation numbers (⩾0.5) at least three inter-rib modules are required to ensure periodicity in the streamwise direction. The flow exhibits unsteadiness in the Coriolis-driven secondary flow and in the separated shear layer. The average duct heat transfer is the highest for the 4:1 AR case. For this case, the secondary flow structures consist of multiple roll cells that direct flow both to the trailing and leading surfaces. The 1:4 AR duct shows flow reversal along the leading surface at high rotation numbers. For this AR, the potential for conduction-limited heat transfer along the leading surface is identified. The friction factor reveals an increase with the rotation number, and shows a significant increase at higher rotation numbers (∼Ro = 0.5).  相似文献   

15.
A numerical study is performed to examine the characteristics of heat and mass transfer and the performance of a plate methanol steam micro reformer with a methanol catalytic combustor. The effects of the flow configurations for co- and counter-current flows are explored in the present study. The influences of the Reynolds number (Re) and various geometric parameters on heat and mass transfer phenomena in the channels are also investigated numerically. It is expected that the Reynolds number (Re) and various geometric parameters can be improved by thermal management to enhance the chemical reaction and thus augment the micro reformer performance. Comparing the co- and counter-current flows via numerical simulation, the results show that the methanol conversion for counter-current flow could be improved by 10%. This is due to the fact that counter-current flow leads to a better thermal management, which in turn improves fuel conversion efficiency. With a higher Reynolds number on the combustor side, the wall temperature is increased and the methanol conversion can thus be enhanced. Meanwhile, a reduced Reynolds number on the micro reformer side would increase the methanol conversion. The results also reveal that appropriate geometric parameters exist for a micro reformer with a combustor to obtain better thermal management and methanol conversion.  相似文献   

16.
To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas turbine working conditions before implementation. Realizing the fact that conducting experiment at gas turbine working condition would be expensive and time consuming, the computational simulation is performed to get a preliminary evaluation on the potential success of mist cooling at gas turbine working conditions. The present investigation aims at validating a CFD model against experimental results in a 180-degree tube bend and applying the model to predict the mist/steam cooling performance at gas turbine working conditions. The results show that the CFD model can predict the wall temperature within 8% of experimental steam-only flow and 16% of mist/steam flow condition. Five turbulence models have been employed and their results are compared. Inclusion of radiation into CFD model causes noticeable increase in accuracy of prediction. The reflect Discrete Phase Model (DPM) wall boundary condition predicts better than the wall-film boundary condition. The CFD simulation identifies that mist impingement over outer wall is the cause for maximum mist cooling enhancement at 45° of bend portion. The computed results also reveal the phenomenon of mist secondary flow interaction at bend portion, adding the mist cooling enhancement at the inner wall. The validated CFD simulation predicts that average of 100% mist cooling enhancement can be achieved by injecting 5% mist at elevated GT working condition.  相似文献   

17.
A numerical study on the buoyancy-assisted flow and heat transfer from a liquid spherical droplet falling in fluid medium is made. The investigation is based on the solution of the Navier-Stokes equations together with the energy equation inside and outside the droplet, along with a suitable interface condition. The governing equations for three-dimensional flow and heat transfer are solved through the pressure correction based iterative algorithm, SIMPLE. The Reynolds number for the exterior flow is considered below 300 with the Richardson number in the range 0 ≤ Ri ≤ 1.5. The form of the wake due to the viscous droplet and its influence on heat transfer and drag coefficient are analyzed for a wide range of physical parameters. It is found that by increasing the Reynolds number, the predicted rate of heat transfer is significantly increased for a liquid droplet compared to a solid sphere. The increment of viscosity of the droplet increases the drag experienced by the droplet but reduces the rate of heat transfer. An increase in Richardson number produces an increment in drag coefficient as well as in heat transfer. In order to establish a simplified model for heat transfer due to a viscous droplet, we compared our computed solutions with several empirical correlations for conjugate heat transfer and proposed a model (in absence of buoyancy). We have also investigated the validity of several empirical correlations for the drag coefficient.  相似文献   

18.
The impact of the nanoparticles and ribs on the thermal performance of the rotating U-type cooling channel are investigated for turbulent forced convection flow of nanofluids. The nanofluids are provided by the inclusion of the nanoparticles of TiO2 and Al2O3 in water as the base fluid, namely, water/Al2O3 and water/TiO2 nanofluids mixtures. The simulations are performed for three-dimensional turbulent flow and heat transfer using an RNG k-? turbulence model for Reynolds number range of 5000 to 20,000. To show the effectiveness of the ribs and nanofluids, three criteria are employed: heat transfer enhancement, pressure drop or power consumed, and the thermal performance factor. It is found that the contribution of turbulence promotion in heat transfer enhancement of the ribbed channel is more effective than that of enlarging the heat surface area. The results show that using ribs at the lowest Reynolds number and utilizing nanofluids at the highest one provide high heat transfer rate and thermal performance. At the middle Reynolds numbers, the effects of these two methods on heat transfer enhancement are relatively close to each other. In this case, if the pumping power is the main concern, using nanofluids is recommended due to providing a smaller pressure drop penalty.  相似文献   

19.
Effects of aspect ratio on heat/mass transfer were investigated in rectangular channels with two different V-shaped rib configurations, which are continuous V-shaped rib configuration with a 60° attack angle, and multiple (staggered) V-shaped rib configuration with a 45° attack angle. The square ribs were attached on the test section in a parallel manner. A naphthalene sublimation method was used to measure the local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices were generated in the channel, and high transfer region was formed at the center of the ribbed walls. However, for the multiple V-shaped rib configuration with 45° attack angle, asymmetric secondary flow patterns were generated due to its geometric features, resulting in uniform heat/mass transfer distributions. The effect of channel aspect ratio was more significant for the continuous 60° V-shaped rib than for the multiple 45° V-shaped rib configuration.  相似文献   

20.
The air-side heat transfer and flow characteristics of cross-flow multiport slab mesochannel heat exchanger are investigated experimentally in this article. The multiport slab mesochannel heat exchanger consists of 15 finned aluminum slabs; each slab contains 68 flow channels of 1 mm circular diameter. The cold deionized water at a constant mass flow rate was forced to flow through the mesochannels, whereas the hot air at different velocities was allowed to pass through the finned passages of the heat exchanger core in cross-flow orientation. The heat transfer and fluid flow key parameters were examined in the region of the air-side Reynolds number in the range of 972–2758, with a constant water-side Reynolds number of 135. The effect of air-side Reynolds number on air-side Nusselt number was examined and a general correlation of Nusselt number with Reynolds number was obtained. The Nusselt number value was found to be higher in comparison with other research works for the corresponding Reynolds number range. The multiport mesochannel flat slab geometry has offered uniform temperature distribution into the core. This uniform temperature distribution leads to higher heat transfer over stand-alone inline flow tube bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号