首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat transfer in a solar water heater could be enhanced by means of twisted tapes, inserted inside the fluid flow tubes, which induce swirl flow and act as turbulence promoters. Experimental investigations for a solar water heater with twisted tape inserts having twist pitch to tube diameter ratio ranging from 3–12 have been carried out for varying mass flow rates. The results on heat transfer and friction data have been found to compare well with available results. Within the range of investigated parameters, the heat transfer in the twisted tape insert collectors has been found to increase by 18–70%, whereas the pressure drop increased by 87–132%, as compared to plane collectors. An expression correlating the Nusselt numbers in twisted tape and plane collectors, the twist pitch ratio has been developed in the form of Nus/Nu=1.3+2.88/y, which predicts the heat transfer within the range of the present investigation. Results conclude that such collectors would be preferable for higher grade energy collection as it is also at higher rate.Solar water heaters having twisted tape inserts inside the flow tubes perform better than the plane ones. It has been observed that heat losses are reduced (due to the lower value of the plate temperature) consequently increasing the thermal performance by about 30% over the plane solar water heaters under the same operating conditions. The effect of twisted-tape geometry, flow Reynolds number and intensity of solar radiation on the thermal performance of the solar water heater has been presented. It has been found that the twisted-tape collectors perform remarkably better in the lower range of flow Reynolds number (Re≈12,000), beyond which the increase in thermal performance is monotonous. It has also been found that such collectors might perform even better at higher values of intensity of solar radiation.  相似文献   

2.
In this study, a numerical investigation for the fluid flow field analysis using different configuration dimple parameters in conjunction with an internal type insert in pipe is carried out. The effects of the dimple diameters with a center twisted tape on the flow pattern, pressure drop, friction factor, and heat transfer characteristics are investigated. The influence of the latter device on heat performance and thermal-hydraulic performance evaluation factor (PEF) were carried out in a pipe for fully developed flow with range for fully developed flow with range of Reynolds number (Re) of 1573 and 23 592. Experiments with numerical models are performed using different dimpled dimeters by inserting twisted tapes. The outcomes observe that the qualitative analysis for flow fields such as static pressure, dynamic pressure, velocity magnitude, wall shear stress, and turbulent kinetic energy as well as the quantities analysis for pressure drop, heat transfer coefficient friction factor, and Nu number in dimpled pipe fitted with twisted tape are greater than plain pipe. This is because using these devices cause more secondary flow, swirl flow, and flow mixing that lead to higher turbulence, which, in turn, enhance the overall heat transfer. The results indicated that the lower and higher values of thermal PEF are about 0.78 and 1.6, respectively, at the dimple dimmers of 1 mm.  相似文献   

3.
Composite cavities formed by a clear space, a layer of porous material, and a solid plate can be engineered for controlling the overall heat transfer across the enclosure. Using different layer dimensions, as well as distinct porous and solid materials, the value of the cavity Nusselt number can be modified with regard to traditional Nu??Ran behavior, which is encountered either in completely empty cavities or in cavities fully fitted with porous materials. Motivated by such novel application, this work presents a study about turbulent natural convection in a composite concentric annulus. The annulus is assumed to be two-dimensional and positioned horizontally, being isothermally heated at the inner cylinder and cooled from the outer surface. Laminar flow is considered in addition to the turbulent regime, which is handled via the standard kε model. The wall treatment applied is the High Reynolds approach. The Two-Energy Equation Model (2EEM) is utilized in the porous section. The transport equations are discretized using the control-volume method. The system of algebraic equations is relaxed via the Semi Implicit Pressure-Linked Equations (SIMPLE) algorithm. A new numerical methodology is applied to resolve all three layers in a single computational domain by establishing two temperature sets, defined according to the location inside the composite structure. Nusselt number behavior shows that for Rayleigh number up to 104 there is no significant variation between the laminar and turbulence models, although the differences increase when the flow gets more intense and/or the porous material becomes more permeable. When comparing the effects of Rayleigh number, Darcy number, porosity, and thermal conductivity ratio between the solid and the fluid on Nu, the results indicate that the solid-phase properties have a greater influence in enhancing the overall heat transferred through the cavity.  相似文献   

4.
In the present work, characteristics of heat transfer, flow resistance, and overall thermo-hydraulic performance of turbulent airflow in a circular tube fitted with louvered strip inserts were investigated through numerical simulation. Our main attention was paid to the effects of the slant angle and pitch of the turbulators. The results show that the Nusselt number is augmented by 2.75–4.05 times (Nu = 108.71–423.87) as that of the smooth tube. The value of performance evaluation criterion (PEC) lies in the range of 1.60–2.05, which demonstrates that the louvered strip insert has a very good overall thermo-hydraulic performance. Moreover, the computational results indicate that larger slant angle and small pitch can effectively enhance the heat transfer rate, but also increase the flow resistance. Furthermore, it is noted that the Nusselt number and friction factor are more sensitive to the slant angle than the inserts pitch. Comparatively steady and good overall thermo-hydraulic performance can be obtained at a moderate slant angle together with a small pitch. All these data show that the louvered strip is a promising tube insert which would be widely used in heat transfer enhancement of turbulent flow.  相似文献   

5.
Forced convection through a channel partially filled with a porous medium is investigated analytically in the present work. Thermally developed condition is considered and the local thermal non-equilibrium model is utilized to obtain the exact solutions of both fluid and solid temperature fields for flow inside the porous material as well as for flow in the clear region. Nusselt number is obtained in terms of the porous insert thickness (S), porosity (?) as well as pertinent parameters such as thermal conductivity ratio (k), Biot number (Bi), and Darcy number (Da). The values of S by which the temperature difference between the two phases approach to zero, for different values of Bi, k, and Da number are obtained. It is found that three mechanisms affect the Nu number i: clear fluid conduction ii: internal heat exchange in the porous medium iii: channeling effect in the clear flow. The value of S, which yields the highest Nu number is found to vary linearly from 0.8 to 0.97 as the value of Da decreases from 10−3 to 10−7. At the expense of reasonable pressure drop the optimum thickness of porous material in order to enhance the heat transfer rate is found S = 0.8.  相似文献   

6.
This article presents numerical results for a turbulent jet impinging against a flat plane covered with a layer of permeable and thermally conducting material. Distinct energy equations are considered for the solid porous material attached to the wall and for the fluid that impinges on it. Parameters such as Reynolds number, porosity, permeability, thickness, and thermal conductivity of the porous layer are varied in order to analyze their effects on the local distribution of Nu. The macroscopic equations for mass, momentum, and energy are obtained based on volume-average concept. The numerical technique employed for discretizing the governing equations was the control volume method with a boundary-fitted nonorthogonal coordinate system. The SIMPLE algorithm was used to handle the pressure-velocity coupling. Results indicate that inclusion of a porous layer eliminates the peak in Nu at the stagnation region. For highly porous and highly permeable material, simulations indicate that the integral heat flux from the wall is enhanced when a thermally conducting porous material is attached to the surface.  相似文献   

7.
The objective of this work is to investigate if it is possible to use porous inserts to enhance heat transfer in rectangular channels. A mathematical model that includes inertia and viscous effects is used to determined the velocity profile in the porous region. For the fluid region, momentum transfer is modeled using the Navier-Stokes equation. These equations and the energy equations are solved numerically via a finite-difference method. Heat transfer between the channel walls and the fluid is determined as a function of Darcy number, inertia parameter, ratio of the fluid and porous medium thermal conductivities, and the porous insert thickness. It is shown that heat transfer could be enhanced by placing a porous insert in the channel. Moreover, for some conditions heat transfer is maximized by using a porous insert thinner than the channel height while a porous insert that completely fills the channel is needed for other conditions.  相似文献   

8.
This study presents the numerical predictions on the turbulent fluid flow and heat transfer characteristics for rectangular channel with porous baffles which are arranged on the bottom and top channel walls in a periodically staggered way. The turbulent governing equations are solved by a control volume-based finite difference method with power-law scheme and the k-ε turbulence model associated with wall function to describe the turbulent structure. The velocity and pressure terms of momentum equations are solved by SIMPLE (semi-implicit method for pressure-linked equation) method.The parameters studied include the entrance Reynolds number Re (1×104-5×104), the baffle height (h=10, 20 and 30 mm) and kind of baffles (solid and porous); whereas the baffle spacing S/H are fixed at 1.0 and the working medium is air. The numerical calculations of the flow field indicate that the flow patterns around the porous- and solid-type baffles are entirely different due to different transport phenomena and it significantly influences the local heat transfer coefficient distributions. Relative to the solid-type baffle channel, the porous-type baffle channel has a lower friction factor due to less channel blockage.Concerning the heat transfer effect, both the solid-type and porous-type baffles walls enhanced the heat transfer relative to the smooth channel. It is further found that at the higher baffle height, the level of heat transfer augmentation is nearly the same for the porous-type baffle, the only difference being the Reynolds number dependence. As expected, the centerline-averaged Nusselt number ratio increases with increasing the baffle height because of the flow acceleration.  相似文献   

9.
This investigation presents the heat transfer enhancement results of flow past repeated permeable ribs mounted on the bottom surface of a two-pass square channel. Spatially periodic flow interruption generated by rib arrays mounted on the walls is extensively used for augmentation of heat transfer in turbine blade cooling passages. To remove the local heat transfer deterioration in the vicinity region of the solid ribs, permeable ribs have been proposed in the literature for single pass coolant passages. This study intends to investigate the performance of permeable ribs array placed on the lower wall of a two-pass channel compared to that of the solid rib array. The heat transfer and friction characteristics are investigated for smooth, solid-ribbed, slit-ribbed, and split-slit-ribbed square channels for the Reynolds numbers of 5,500, 12,800, and 16,400. An array of ribs (consisting of fifteen ribs) has been mounted over the total test section, with seven each in the first and second passes, and one in the bend. The performance analysis has been carried out using thermal performance on the basis of constant pumping power and entropy generation principle.  相似文献   

10.
The present study is to investigate the numerical simulation of steady laminar forced convection in a partially porous channel, with four dissimilar porous-blocks, attached to the strip heat sources at the bottom wall. The analysis is based on the Navier–Stokes equation in the fluid field, the Darcy–Brinkman–Forchheimer flow model in the porous field, and the energy equations for two thermal fields. The effects of variations of different parameters such as porous blocks Darcy numbers, arrangements of dissimilar blocks, Forchheimer coefficient, Reynolds number, thermal conductivity and Prandtl number are investigated and the velocity and temperature fields are presented and discussed. In the dissimilar partially porous channel, it is found that when the blocks sorted from the lowest to the highest Da in the flow direction, the total heat transfer enhancement is almost the same as in the similar porous channel (Nu/Nusim = 92%), while the total pressure drop is considerably lower (P/Psim = 28%). In addition, reverse arrangement of porous blocks is suggested to prepare more uniform temperature gradient in all heat sources.  相似文献   

11.
In the present study, the effect of a helical coiled tape on the heat transfer characteristics in a tubular heat exchanger has been studied. Numerical analysis is carried out in a tubular heat exchanger with a helical coiled tape insert under laminar flow conditions. The heat transfer characteristics, like Nusselt number (Nu) and friction factor (f), have been determined. Numerical modeling is undertaken and validated using analytical results. To study the parametric variation, simulation is carried out for different width ratios (WR) and twist ratios (TRs). It is observed that Nu increases as the WR is increased and the TR is reduced. The thermohydraulic performance index (THPI) is measured and found to be higher for a combination of a higher WR and a higher TR. From the tested values, it is seen that for a combination of WR = 3 and TR = 1.25, the maximum THPI was observed. It is concluded that both the tape width and pitch will significantly influence the thermohydraulic characteristics in a tubular heat exchanger with a helical tape insert inserted.  相似文献   

12.
The article presents the application of a mathematical model for simulation of the swirling flow in a tube induced by loose-fit twisted tape insertion. Effects of the clearance ratio defined as ratio of clearance between the edge of tape and tube wall to tube diameter (CR = c/D = 0.0 (tight-fit), 0.1, 0.2 and 0.3) on heat transfer enhancement (Nu), friction factor (f) and thermal performance factor (η) are numerically investigated for twisted tapes at two different twist ratios (y/w = 2.5 and 5.0). The simulation is conducted in order to gain an understanding of physical behavior of the thermal and fluid flow in the tube fitted with loose-fit twisted tape under constant wall temperature conditions in the turbulent flow regime for the Reynolds number ranging from 3000 to 10,000. The Navier–Stokes equation in common with a energy equation is solved using the SIMPLE technique with the standard kε turbulence model, the Renormalized Group (RNG) kε turbulence model, the standard kω turbulence model, and Shear Stress Transport (SST) kω turbulence model. The numerical results show that the predictions of heat transfer (Nu) and friction factor (f) based on the SST kω turbulence models are in better agreement with Manglik and Bergles [R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes, part II: Transition and turbulent flows, Transaction ASME, Journal of Heat Transfer, 115 (1993) 890–896.] than other turbulence models. The mean flow patterns in a tube with loose-fit twisted tapes in terms of contour plots of velocity, pathline, pressure, temperature and turbulent kinetics energy (TKE) are presented and compared with those in a tube fitted with tight-fit twisted tapes. It is visible that the twisted tape inserts for y/w = 2.5 with CR = 0.0 (tight-fit), 0.1, 0.2 and 0.3 can enhance heat transfer rates up to 73.6%, 46.6%, 17.5% and 20%, respectively and increase friction factors up to 330%, 262%, 189%, and 160%, respectively, in comparison with those of the plain tube. The tube with loose-fit twisted tape inserts with CR = 0.1, 0.2 and 0.3 provide heat transfer enhancement around 15.6%, 33.3% and 31.6% lower than those with CR = 0.0 (the tight-fit twisted tape). The heat transfer augmentation is expected to involve the swirl flow formation between the tape and a tube wall. In addition, the simulation for thermal performance factor (η) of a tube with the loose-fit twisted tape and the tight-fit twisted tape under the same pumping power is also conducted, for comparison.  相似文献   

13.
Heat transfer from a cylinder in axial turbulent flows   总被引:1,自引:0,他引:1  
Local convective heat transfer coefficients were measured on a two-diameter long cylinder in axial flows of air at conditions unexplored so far, by using thermochromic liquid crystals (TLC) coated on an electrically heated strip-foil consisting bonded to the external surfaces. The Reynolds numbers (Re) based on the cylinder diameter were between 8.9 × 104 and 6.17 × 105, and the flow in front of the cylinder was modified in some cases by the use of a turbulence generating grid, or by circular disc inserts of two sizes placed upstream of the cylinder. These created a major change in the local convective heat transfer coefficient distribution on the cylinder. Increase of the turbulence intensity from Tu < 0.1% to Tu = 6.7% at the same Re increased the average calculated Nusselt number Nu over the cylinder by 25%, and decreased the Nu non-uniformity over the surface. One of the flow modification inserts also reduced significantly the Nu non-uniformity. The position of flow reattachment was measured using tufts. Our heat transfer data agree well with the small amount if data published of others, when extrapolated to their conditions. Correlations between the Nu and Re in the form Nu = CRee were established and presented for the average Nu on the front, middle and rear cylinder surfaces, and the variation of the local exponent e was shown along the cylinder. Introducing a new technique, a TLC-coated heated flat plate mounted in the flow above the cylinder in the meridional plane was demonstrated to help visualize the flow field above the cylinder. A track of maximum convective coefficients on this plate was found similar in position to the stream line dividing the forward and backward flows in a case measured for the separated flow in a past study.  相似文献   

14.
Size effect on microscale single-phase flow and heat transfer   总被引:1,自引:0,他引:1  
The present discussion will focus on the size effect induced by the variation of dominant factors and phenomena in the flow and heat transfer as the device scale decreases. Due to the larger surface to volume ratio for microchannels and microdevices, factors related to surface effects have more impact to microscale flow and heat transfer. For example, surface friction induced flow compressibility makes the fluid velocity profiles flatter and leads to higher friction factors and Nusselt numbers; surface roughness is likely responsible for the early transition from laminar to turbulent flow and the increased friction factor and Nusselt number; the relative importance of viscous force modifies the correlation between Nu and Ra for natural convection in a microenclosure and, other effects, such as channel surface geometry, surface electrostatic charges, axial heat conduction in the channel wall and measurement errors, could lead to different flow and heat transfer behaviors from that at conventional scales.  相似文献   

15.
Enhanced heat transfer tubes (EHTT) with segmented mesh-conical frustums are considered. Tube diameter and frustum apex angle are fixed as 20?mm and 60o, respectively. The height ratio of frustum and sliced part are set as a golden ratio (1.618). Laminar thermal-hydraulic performance and effects of some parameters, e.g., bottom frustum diameter and pitch, are numerically simulated. The equal equivalent diameter and total flow area criteria are adopted to simplify 3D mesh pores to 2D ones. Flow and temperature fields show large velocities and gradients close to the wall and smaller velocities in the bulk region. This enhances heat transfer with a limited pressure drop. EHTTs obtain 1.4 - 3.3 times higher heat transfer than bare tubes and the performance evaluation criterion (PEC) varies from 1.3 to 1.8. Nusselt number (Nu) and friction factor (f) correlations are proposed. New insights into heat transfer enhancement and tube configuration are provided.  相似文献   

16.
Wind effect, of both the wind incidence angle and the wind speed, on convection and surface radiation heat losses of a fully open cylindrical cavity with constant bottom wall temperature was numerically investigated. The impacts of cavity tilt angle and wall temperature were also considered. Temperature contours, velocity contours, and vectors inside and around the cavity were presented. The variations of average convection and radiation heat loss Nusselt numbers Nuc and Nur and percentages of heat losses with related parameters (wind speed, wind incidence angle, tilt angle, and bottom wall temperature) were also shown. In the end, correlations about Nuc and Nur for practical applications were proposed. Results show that compared with no-wind condition, Nuc under a wind condition is almost always higher except for head-on wind with velocity of 1.5 m/s, while Nur is always lower. Nuc varies slightly, while Nur increases rapidly as the bottom wall temperature increases. With the existence of wind, the effect of tilt angle on heat transfer becomes more complex. A critical wind direction close to 30° is detected, which maximizes Nuc and percentage of convective heat loss. The results also demonstrate that wind speed, wind incidence angle, and tilt angle should be considered simultaneously when analyzing heat transfer inside the cavity under a wind condition.  相似文献   

17.
Introducing passive devices in the form of inserts helps to increase the heat transfer characteristics in a circular pipe. In the present work, the feasibility of using two twisted tapes has been numerically studied under laminar flow conditions. Two twisted tapes with configurations of co‐swirl and counter‐swirl conditions were simulated for Re ranging from 1000 to 2500. Heat transfer characteristics like Nusselt number, friction factor, and thermohydraulic performance index (THPI) were investigated. Even the effect of spacing of the tubes inside the pipe was numerically studied. Results indicated that the insertion of two tapes will improve the performance of the circular tube compared with a single tape in terms of a higher Nu and higher THPI. It is observed that for the co‐swirl condition for a Reynolds number of 1000, Nu and THPI is 38% and 29% higher than using a single tape, whereas, for the counter‐swirl condition, they are 43% and 34% higher than that of the single tape condition. Also, it is revealed that counter swirl positioning of the tape with an L/D ratio 0.56 outperformed all other configurations with the highest THPI.  相似文献   

18.
A numerical investigation has been carried out to analyze the effect of wall proximity of a triangular cylinder on the heat transfer and flow field in a horizontal channel. Computations have been carried out for Reynolds numbers (based on triangle width) range of 100–450 and gap widths (a/h) 0.5, 0.75 and 1. Results are presented in the form of instantaneous contours of temperature, vorticity, with some characteristics of fluid flow and heat transfer; such as time-averaged and instantaneous local Nusselt number, skin friction coefficient along bottom channel's wall, and drag coefficient. Results show that approaching triangular cylinder in the wall, removes vortex shedding and subsequently the heat transfer rate decreases at low Reynolds number. By decreasing the vortex shedding, drag coefficient decrease as triangular cylinder approaches the wall of the channel. The variation of vortex formation has a more significant suppression effect on the skin friction coefficient than the Nusselt number.  相似文献   

19.
Different dimple geometrical configurations with a combination of corrugated tubes and twisted tape are numerically investigated. Water is used as a working fluid for constant heat flux heat transfer conditions at the pipe wall. The dimensionless diameter of the dimples (d/D) used in this study is 0.09, 0.18, 0.27, and 0.36. However, the corrugation configuration diameter is 1 mm. The numerical simulations are carried out at the Reynolds number in the range of 1500–14,000. The outcomes reveal that the friction factor (f) and Nu number are augmented as the dimple diameter increases. The Nu number ratio of 1.25 is found for a dimple pipe tube with a diameter of 4 mm. The numerical outcome presented more mixing, secondary, and vortex produced in the main flow direction and near the pipe wall to the rotating flow induced by twisted tape. Moreover, mixed, secondary vortices and rotational flow originate behind and near the dimple, twisted tape, and corrugation surfaces. These rotational and vortices can promote mixing in flow between the thermal boundary layer and velocity boundary flow layer. So, increase the heat transfer enhancement. The improved pipes with different dimple diameters produce a maximum performance evaluation factor of is more than 1.25.  相似文献   

20.
Heat exchangers have a wider scope in numerous applications, such as space heating, chemical industries, power stations, and so on. Due to heat loss and the thermal properties of the materials involved, the overall performance of a heat exchanger is questionable. Therefore, studies related to heat transfer techniques are appreciated in the research community. Thus, the present study numerically investigates the heat transfer performance of a horizontal heat pipe equipped with hexagonal perforated twisted tape inserts. Further, the numerical solutions of Nusselt number (Nu), friction factor (f), and thermal performance factor (TPF) are optimized with the help of response surface methodology (RSM). The parameters investigated in this study are Reynolds number (Re), which varies between 500 and 1500, input heat supply (Q) between 100 and 1000 W, and pitch ratio (3.2, 4, and 5.2). ANSYS fluid flow fluent was used to perform flow simulations for three different twisted tape inserts: horizontal, vertical, and alternate hexagon perforations. Optimum solutions are obtained at 1000 W heat supply, 1500 Re, and p/di = 4 from alternatively perforated twisted tape inserts. The optimum Nu, f, and TPF achieved are 119.545, 0.437, and 1.82, respectively. Also, the proposed RSM optimization method is evidenced with a maximum of 2.673% error during the confirmatory test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号